**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Similitude

Summary

Similitude is a concept applicable to the testing of engineering models. A model is said to have similitude with the real application if the two share geometric similarity, kinematic similarity and dynamic similarity. Similarity and similitude are interchangeable in this context.
The term dynamic similitude is often used as a catch-all because it implies that geometric and kinematic similitude have already been met.
Similitude's main application is in hydraulic and aerospace engineering to test fluid flow conditions with scaled models. It is also the primary theory behind many textbook formulas in fluid mechanics.
The concept of similitude is strongly tied to dimensional analysis.
Engineering models are used to study complex fluid dynamics problems where calculations and computer simulations aren't reliable. Models are usually smaller than the final design, but not always. Scale models allow testing of a design prior to building, and in many cases are a critical step in the development process.
Construction of a scale model, however, must be accompanied by an analysis to determine what conditions it is tested under. While the geometry may be simply scaled, other parameters, such as pressure, temperature or the velocity and type of fluid may need to be altered. Similitude is achieved when testing conditions are created such that the test results are applicable to the real design.
The following criteria are required to achieve similitude;
Geometric similarity – the model is the same shape as the application, usually scaled.
Kinematic similarity – fluid flow of both the model and real application must undergo similar time rates of change motions. (fluid streamlines are similar)
Dynamic similarity – ratios of all forces acting on corresponding fluid particles and boundary surfaces in the two systems are constant.
To satisfy the above conditions the application is analyzed;
All parameters required to describe the system are identified using principles from continuum mechanics.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (10)

Related courses (6)

Similitude

Similitude is a concept applicable to the testing of engineering models. A model is said to have similitude with the real application if the two share geometric similarity, kinematic similarity and dynamic similarity. Similarity and similitude are interchangeable in this context. The term dynamic similitude is often used as a catch-all because it implies that geometric and kinematic similitude have already been met. Similitude's main application is in hydraulic and aerospace engineering to test fluid flow conditions with scaled models.

Buckingham π theorem

In engineering, applied mathematics, and physics, the Buckingham pi theorem is a key theorem in dimensional analysis. It is a formalization of Rayleigh's method of dimensional analysis. Loosely, the theorem states that if there is a physically meaningful equation involving a certain number n of physical variables, then the original equation can be rewritten in terms of a set of p = n − k dimensionless parameters pi1, pi2, ..., pip constructed from the original variables, where k is the number of physical dimensions involved; it is obtained as the rank of a particular matrix.

Reynolds number

In fluid mechanics, the Reynolds number (Re) is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow (eddy currents).

Ce cours est une première introduction à la mécanique des fluides. On aborde tout d'abord les propriétés physiques des fluides et quelques principes fondamentaux de la physique, dont ceux de conservat

The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and c

This course helps students acquire basic knowledge of the main concepts and equations of fluid mechanics and develop the skills necessary to work effectively in professional engineering practice.

Related lectures (27)

Dimensional Analysis & ModellingBIOENG-312: Fluid mechanics (for SV)

Explores dimensional analysis, pi-theorem, modeling, and gravitational effects in open channel flow.

Physical and Numerical Modeling: Hydraulic Constructions and Law of SimilarityCIVIL-410: Fluvial hydraulics and river training works

Explores physical and numerical modeling in river hydraulics, emphasizing hydraulic constructions and the law of similarity.

Heat Transfer FundamentalsME-465: Advanced heat transfer

Covers the fundamentals of heat transfer, focusing on radiation, conduction, and convection, including boundary layers and Nusselt number.