Related publications (32)

Reducing Annotation Efforts in Electricity Theft Detection Through Optimal Sample Selection

Wenlong Liao, Zhe Yang

Supervised machine learning models are receiving increasing attention in electricity theft detection due to their high detection accuracy. However, their performance depends on a massive amount of labeled training data, which comes from time-consuming and ...
Piscataway2024

GANDALF: Graph-based transformer and Data Augmentation Active Learning Framework with interpretable features for multi-label chest Xray classification

Informative sample selection in an active learning (AL) setting helps a machine learning system attain optimum performance with minimum labeled samples, thus reducing annotation costs and boosting performance of computer-aided diagnosis systems in the pres ...
Amsterdam2024

Euclid preparation XXXVII. Galaxy colour selections with Euclid and ground photometry for cluster weak-lensing analyses

Frédéric Courbin, Georges Meylan, Gianluca Castignani, Maurizio Martinelli, Matthias Wiesmann, Yi Wang, Richard Massey, Fabio Finelli, Marcello Farina

Aims. We derived galaxy colour selections from Euclid and ground-based photometry, aiming to accurately define background galaxy samples in cluster weak-lensing analyses. These selections have been implemented in the Euclid data analysis pipelines for gala ...
Edp Sciences S A2024

Biases in Information Selection and Processing: Survey Evidence from the Pandemic

Andreas Fuster

We conduct two survey experiments to study which information people choose to consume and how it affects their beliefs. In the first experiment, respondents choose between optimistic and pessimistic article headlines related to the COVID-19 pandemic and ar ...
2024

Efficient local linearity regularization to overcome catastrophic overfitting

Volkan Cevher, Grigorios Chrysos, Fanghui Liu, Elias Abad Rocamora

Catastrophic overfitting (CO) in single-step adversarial training (AT) results in abrupt drops in the adversarial test accuracy (even down to 0%). For models trained with multi-step AT, it has been observed that the loss function behaves locally linearly w ...
2024

Interpret3C: Interpretable Student Clustering Through Individualized Feature Selection

Vinitra Swamy, Paola Mejia Domenzain, Julian Thomas Blackwell, Isadora Alves de Salles

Clustering in education, particularly in large-scale online environments like MOOCs, is essential for understanding and adapting to diverse student needs. However, the effectiveness of clustering depends on its interpretability, which becomes challenging w ...
2024

Robust Outlier Rejection for 3D Registration with Variational Bayes

Mathieu Salzmann, Jiancheng Yang, Zheng Dang, Zhen Wei, Haobo Jiang

Learning-based outlier (mismatched correspondence) rejection for robust 3D registration generally formulates the outlier removal as an inlier/outlier classification problem. The core for this to be successful is to learn the discriminative inlier/outlier f ...
Los Alamitos2023

DARE-GRAM : Unsupervised Domain Adaptation Regression by Aligning Inverse Gram Matrices

Olga Fink, Ismail Nejjar

Unsupervised Domain Adaptation Regression (DAR) aims to bridge the domain gap between a labeled source dataset and an unlabelled target dataset for regression problems. Recent works mostly focus on learning a deep feature encoder by minimizing the discrepa ...
IEEE2023

Improving Generalization of Pretrained Language Models

Rabeeh Karimi Mahabadi

In this dissertation, we propose multiple methods to improve transfer learning for pretrained language models (PLMs). Broadly, transfer learning is a powerful technique in natural language processing, where a language model is first pre-trained on a data-r ...
EPFL2023

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.