The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So that if input A produces response X and input B produces response Y then input (A + B) produces response (X + Y).
A function that satisfies the superposition principle is called a linear function. Superposition can be defined by two simpler properties: additivity
and homogeneity
for scalar a.
This principle has many applications in physics and engineering because many physical systems can be modeled as linear systems. For example, a beam can be modeled as a linear system where the input stimulus is the load on the beam and the output response is the deflection of the beam. The importance of linear systems is that they are easier to analyze mathematically; there is a large body of mathematical techniques, frequency domain linear transform methods such as Fourier and Laplace transforms, and linear operator theory, that are applicable. Because physical systems are generally only approximately linear, the superposition principle is only an approximation of the true physical behavior.
The superposition principle applies to any linear system, including algebraic equations, linear differential equations, and systems of equations of those forms. The stimuli and responses could be numbers, functions, vectors, vector fields, time-varying signals, or any other object that satisfies certain axioms. Note that when vectors or vector fields are involved, a superposition is interpreted as a vector sum. If the superposition holds, then it automatically also holds for all linear operations applied on these functions (due to definition), such as gradients, differentials or integrals (if they exist).
By writing a very general stimulus (in a linear system) as the superposition of stimuli of a specific and simple form, often the response becomes easier to compute.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a quantum mechanical prediction for the system represented by the state. Knowledge of the quantum state together with the quantum mechanical rules for the system's evolution in time exhausts all that can be known about a quantum system. Quantum states may be defined in different ways for different kinds of systems or problems.
In mathematics, the term linear is used in two distinct senses for two different properties: linearity of a function (or mapping ); linearity of a polynomial. An example of a linear function is the function defined by that maps the real line to a line in the Euclidean plane R2 that passes through the origin. An example of a linear polynomial in the variables and is Linearity of a mapping is closely related to proportionality. Examples in physics include the linear relationship of voltage and current in an electrical conductor (Ohm's law), and the relationship of mass and weight.
In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication).
Today one is able to manipulate matter at the nanoscale were quantum behavior becomes important and possibly information processing will have to take into account laws of quantum physics. We introduce
Ce cours introduit les lois fondamentales de l'électricité et les méthodes permettant d'analyser des circuits électriques linéaires, composés de résistances, condensateurs et inductances. On commencer
Découvrir le monde de l'électronique depuis les lois fondamentales des composants discrets linéaires et non linéaires. Les circuits obtenus avec des assemblages de composants nécessitent de nombreuses
We propose a theoretical approach to derive amplitude equations governing the weakly nonlinear evolution of non-normal dynamical systems, when they experience transient growth or respond to harmonic forcing. This approach reconciles the non-modal nature of ...
2022
,
The operation principle of a semiconductor nanowire (NW) ion-sensitive field-effect transistor (ISFET), denoted for pH sensing, is studied within the framework of this work. The physical processes in the system are mathematically modelled and presented in ...
PLEIADES PUBLISHING INC2021
, , , ,
In general, there are different, relatively independent forms of orbital angular momenta at a given propagation distance, which might exhibit different dynamic spatial characteristics. One type involves a beam with a helical phase-front that rotates around ...