Fish locomotion is the various types of animal locomotion used by fish, principally by swimming. This is achieved in different groups of fish by a variety of mechanisms of propulsion, most often by wave-like lateral flexions of the fish's body and tail in the water, and in various specialised fish by motions of the fins. The major forms of locomotion in fish are:
Anguilliform, in which a wave passes evenly along a long slender body;
Sub-carangiform, in which the wave increases quickly in amplitude towards the tail;
Carangiform, in which the wave is concentrated near the tail, which oscillates rapidly;
Thunniform, rapid swimming with a large powerful crescent-shaped tail; and
Ostraciiform, with almost no oscillation except of the tail fin.
More specialized fish include movement by pectoral fins with a mainly stiff body, opposed sculling with dorsal and anal fins, as in the sunfish; and movement by propagating a wave along the long fins with a motionless body, as in the knifefish or featherbacks.
In addition, some fish can variously "walk" (i.e., crawl over land using the pectoral and pelvic fins), burrow in mud, leap out of the water and even glide temporarily through the air.
Fish swim by exerting force against the surrounding water. There are exceptions, but this is normally achieved by the fish contracting muscles on either side of its body in order to generate waves of flexion that travel the length of the body from nose to tail, generally getting larger as they go along. The vector forces exerted on the water by such motion cancel out laterally, but generate a net force backwards which in turn pushes the fish forward through the water. Most fishes generate thrust using lateral movements of their body and caudal fin, but many other species move mainly using their median and paired fins. The latter group swim slowly, but can turn rapidly, as is needed when living in coral reefs for example. But they can't swim as fast as fish using their bodies and caudal fins.
As an example of how a fish moves through the water, consider the tilapia shown in the diagram.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The objective of this course is to expose students to the fundamentals of robotics at small scale. This includes a focus on physical laws that predominate at the nano and microscale, technologies for
Students will acquire an integrative view on biological and artificial algorithms for controlling autonomous behaviors. Students will synthesize and apply this knowledge in oral presentations and comp
The course presents the design, control, and applications of legged robots. It gives a review of different types of legged robots (including two-, four- and multi-legged robots), and an analysis of di
Fins are distinctive anatomical features composed of bony spines or rays protruding from the body of Actinopterygii and Chondrichthyes fishes. They are covered with skin and joined together either in a webbed fashion, as seen in most bony fish, or similar to a flipper, as seen in sharks. Apart from the tail or caudal fin, fish fins have no direct connection with the spine and are supported only by muscles. Their principal function is to help the fish swim.
Fish anatomy is the study of the form or morphology of fish. It can be contrasted with fish physiology, which is the study of how the component parts of fish function together in the living fish. In practice, fish anatomy and fish physiology complement each other, the former dealing with the structure of a fish, its organs or component parts and how they are put together, such as might be observed on the dissecting table or under the microscope, and the latter dealing with how those components function together in living fish.
Animal locomotion, in ethology, is any of a variety of methods that animals use to move from one place to another. Some modes of locomotion are (initially) self-propelled, e.g., running, swimming, jumping, flying, hopping, soaring and gliding. There are also many animal species that depend on their environment for transportation, a type of mobility called passive locomotion, e.g., sailing (some jellyfish), kiting (spiders), rolling (some beetles and spiders) or riding other animals (phoresis).
On propose dans ce MOOC de se former à et avec Thymio :
apprendre à programmer le robot Thymio et ce faisant, s’initier
à l'informatique et la robotique.
In diesem Kurs handelt es sich um das Verständnis der grundlegenden Mechanismen eines Roboters wie Thymio, seiner Programmierung mit verschiedenen Sprachen und seiner Verwendung im Unterricht mit den
In diesem Kurs handelt es sich um das Verständnis der grundlegenden Mechanismen eines Roboters wie Thymio, seiner Programmierung mit verschiedenen Sprachen und seiner Verwendung im Unterricht mit den
Locomotion is based on a sophisticated interaction among the environment, the musculoskeletal system, the spinal cord, and the brain locomotor areas. Quality of life is strongly related to the proper capability of this movement. However, many pathologies, ...
EPFL2023
The transition from aquatic to terrestrial environments represents a significant event in the history of evolution. For this transition to occur, animals had to adapt their morphology, physiology and locomotory skills to handle the challenges and interacti ...
Robotics and neuroscience are sister disciplines that both aim to understand how agile, efficient, and robust locomotion can be achieved in autonomous agents. Robotics has already benefitted from neuromechanical principles discovered by investigating anima ...