Fish locomotion is the various types of animal locomotion used by fish, principally by swimming. This is achieved in different groups of fish by a variety of mechanisms of propulsion, most often by wave-like lateral flexions of the fish's body and tail in the water, and in various specialised fish by motions of the fins. The major forms of locomotion in fish are: Anguilliform, in which a wave passes evenly along a long slender body; Sub-carangiform, in which the wave increases quickly in amplitude towards the tail; Carangiform, in which the wave is concentrated near the tail, which oscillates rapidly; Thunniform, rapid swimming with a large powerful crescent-shaped tail; and Ostraciiform, with almost no oscillation except of the tail fin. More specialized fish include movement by pectoral fins with a mainly stiff body, opposed sculling with dorsal and anal fins, as in the sunfish; and movement by propagating a wave along the long fins with a motionless body, as in the knifefish or featherbacks. In addition, some fish can variously "walk" (i.e., crawl over land using the pectoral and pelvic fins), burrow in mud, leap out of the water and even glide temporarily through the air. Fish swim by exerting force against the surrounding water. There are exceptions, but this is normally achieved by the fish contracting muscles on either side of its body in order to generate waves of flexion that travel the length of the body from nose to tail, generally getting larger as they go along. The vector forces exerted on the water by such motion cancel out laterally, but generate a net force backwards which in turn pushes the fish forward through the water. Most fishes generate thrust using lateral movements of their body and caudal fin, but many other species move mainly using their median and paired fins. The latter group swim slowly, but can turn rapidly, as is needed when living in coral reefs for example. But they can't swim as fast as fish using their bodies and caudal fins. As an example of how a fish moves through the water, consider the tilapia shown in the diagram.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (8)
ME-436: Micro/Nano robotics
The objective of this course is to expose students to the fundamentals of robotics at small scale. This includes a focus on physical laws that predominate at the nano and microscale, technologies for
BIOENG-456: Controlling behavior in animals and robots
Students will acquire an integrative view on biological and artificial algorithms for controlling autonomous behaviors. Students will synthesize and apply this knowledge in oral presentations and comp
MICRO-507: Legged robots
The course presents the design, control, and applications of legged robots. It gives a review of different types of legged robots (including two-, four- and multi-legged robots), and an analysis of di
Afficher plus
Séances de cours associées (31)
Systèmes de mesure: Analyse des plaques de force
Explore l'analyse des plaques de force pour la modélisation de locomotion, y compris le calcul de la COP et le GRF pendant la démarche.
Analyse de la démarche : Symmétrie et variabilité
Explore la symétrie, l'irrégularité et la variabilité de la démarche, y compris les méthodes de mesure et les implications des maladies.
Analyse spatio-temporelle de la Gait: Principaux paramètres
Explore les principaux paramètres de l'analyse spatio-temporelle de la démarche et l'importance de la vitesse de la démarche comme signe vital.
Afficher plus
Publications associées (183)

The neuromechanics of animal locomotion: From biology to robotics and back

Auke Ijspeert, Pavan P Ramdya

Robotics and neuroscience are sister disciplines that both aim to understand how agile, efficient, and robust locomotion can be achieved in autonomous agents. Robotics has already benefitted from neuromechanical principles discovered by investigating anima ...
AMER ASSOC ADVANCEMENT SCIENCE2023

Investigating the neuromechanical control of healthy gait modulation and pathological gaits observed in cerebral palsy using neuromuscular simulations

Andrea Di Russo

Locomotion is based on a sophisticated interaction among the environment, the musculoskeletal system, the spinal cord, and the brain locomotor areas. Quality of life is strongly related to the proper capability of this movement. However, many pathologies, ...
EPFL2023

Neuromechanical Simulations of Animats with Decentralised Control

Jonathan Patrick Arreguit O'Neill

The transition from aquatic to terrestrial environments represents a significant event in the history of evolution. For this transition to occur, animals had to adapt their morphology, physiology and locomotory skills to handle the challenges and interacti ...
EPFL2023
Afficher plus
Concepts associés (13)
Nageoire
thumb|right|300px|Schéma d'un Téléostéen (majorité des poissons actuels, osseux à nageoires rayonnées), le Lampanyctodes hectoris1 opercule2 ligne latérale3 nageoire dorsale4 nageoire molle ou adipeuse5 pédoncule caudal ou queue6 nageoire caudale7 nageoire anale8 photophores9 nageoire ventrale ou pelvienne (par paire)10 nageoire pectorale (par paire). Une nageoire est un membre ou un appendice en général large et plat issu d'un repli cutané, permettant le mouvement et le soutien dans le milieu aquatique.
Anatomie des poissons
L'anatomie des poissons est principalement régie par les caractéristiques physiques de l'eau ; elle est beaucoup plus dense que l'air, relativement plus pauvre en oxygène et absorbe plus la lumière que l'air. thumb|Bouche et dents d'un Panaque nigrolineatus en aquarium, d'environ 11 ans. Chez les poissons, la nourriture est ingérée par la bouche et subit un début de trituration dans l'œsophage. Le broyage des aliments se fait essentiellement dans l'estomac et, chez de nombreuses espèces, dans des diverticules en forme de doigt appelés cæca pyloriques.
Locomotion
En physiologie, la locomotion est la faculté, pour un organisme vivant, de se mouvoir pour se déplacer. Des contraintes sont exercées sur ces organismes suivant le milieu, terrestre, aérien ou aquatique, dans lesquels ils se meuvent. La fonction locomotrice se traduit par un ensemble de mouvements qui entraînent le déplacement de l'être vivant : la progression quadrupède, bipède et apode, dont la reptation, en milieu terrestre, diverses formes de nage et de propulsion en milieu aquatique (système de propulsion par réaction des calmars) et les vols planés ou battus en milieu aérien.
Afficher plus
MOOCs associés (11)
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
Die digitale Welt mit dem Thymio Roboter entdecken
In diesem Kurs handelt es sich um das Verständnis der grundlegenden Mechanismen eines Roboters wie Thymio, seiner Programmierung mit verschiedenen Sprachen und seiner Verwendung im Unterricht mit den
Die digitale Welt mit dem Thymio Roboter entdecken (FHNW)
In diesem Kurs handelt es sich um das Verständnis der grundlegenden Mechanismen eines Roboters wie Thymio, seiner Programmierung mit verschiedenen Sprachen und seiner Verwendung im Unterricht mit den
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.