Cellular senescence is a phenomenon characterized by the cessation of cell division. In their experiments during the early 1960s, Leonard Hayflick and Paul Moorhead found that normal human fetal fibroblasts in culture reach a maximum of approximately 50 cell population doublings before becoming senescent. This process is known as "replicative senescence", or the Hayflick limit. Hayflick's discovery of mortal cells paved the path for the discovery and understanding of cellular aging molecular pathways. Cellular senescence can be initiated by a wide variety of stress inducing factors. These stress factors include both environmental and internal damaging events, abnormal cellular growth, oxidative stress, autophagy factors, among many other things.
The physiological importance for cell senescence has been attributed to prevention of carcinogenesis, and more recently, aging, development, and tissue repair. Senescent cells contribute to the aging phenotype, including frailty syndrome, sarcopenia, and aging-associated diseases. Senescent astrocytes and microglia contribute to neurodegeneration.
Mechanistically, replicative senescence can be triggered by a DNA damage response due to the shortening of telomeres. Cells can also be induced to senesce by DNA damage in response to elevated reactive oxygen species (ROS), activation of oncogenes, and cell-cell fusion. Normally, cell senescence is reached through a combination of a variety of factors (i.e., both telomere shortening and oxidative stress). The DNA damage response (DDR) arrests cell cycle progression until DNA damage, such as double-strand breaks (DSBs), are repaired. Senescent cells display persistent DDR that appears to be resistant to endogenous DNA repair activities. The prolonged DDR activates both ATM and ATR DNA damage kinases. The phosphorylation cascade initiated by these two kinases causes the eventual arrest of the cell cycle. Depending on the severity of the DNA damage, the cells may no longer be able to undergo repair and either go through apoptosis or cell senescence.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores replicative immortality in cancer cells, focusing on telomere erosion, telomerase activity, and the role of p53 in maintaining genomic stability.
Explores cellular senescence mechanisms induced by mitogenic signals, DNA damage, and oncogenes, emphasizing the role of key regulatory proteins and the impact on cell division.
Telomere biology.
The students will obtain theoretical and practical insight into telomere biology and the roles of telomeres during cellular senescence and for genome stability.
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
Telomeres are nucleoprotein structures at the ends of linear chromosomes, being essential for the maintenance of genomic integrity. Telomeres have a unique structure which distinguishes chromosome termini from DNA damage sites. Shelterin complexes are the ...
Recent research shows prominent effects of pregnancy and the parenthood transition on structural brain characteristics in humans. Here, we present a comprehensive study of how parental status and number of children born/fathered links to markers of brain a ...
Mitochondria are essential organelles participating in numerous cellular functions, including energy harvesting, regulation of homeostasis and apoptosis. Changes in mitochondrial number, morphology, and function not only impact cellular metabolism but also ...
Ageing (or aging in American English) is the process of becoming older. The term refers mainly to humans, many other animals, and fungi, whereas for example, bacteria, perennial plants and some simple animals are potentially biologically immortal. In a broader sense, ageing can refer to single cells within an organism which have ceased dividing, or to the population of a species. In humans, ageing represents the accumulation of changes in a human being over time and can encompass physical, psychological, and social changes.
Werner syndrome (WS) or Werner's syndrome, also known as "adult progeria", is a rare, autosomal recessive disorder which is characterized by the appearance of premature aging. Werner syndrome is named after the German scientist Otto Werner. He identified the syndrome in four siblings observed with premature aging, which he explored as the subject of his dissertation of 1904. It has a global incidence rate of less than 1 in 100,000 live births (although incidence in Japan and Sardinia is higher, affecting 1 in 20,000–40,000 and 1 in 50,000, respectively).
The 'mammalian target of rapamycin (mTOR), also referred to as the mechanistic target of rapamycin', and sometimes called FK506-binding protein 12-rapamycin-associated protein 1 (FRAP1), is a kinase that in humans is encoded by the MTOR gene. mTOR is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases. mTOR links with other proteins and serves as a core component of two distinct protein complexes, mTOR complex 1 and mTOR complex 2, which regulate different cellular processes.