Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the cell's production of a certain substance. These processes are chemical networks that use a series of biochemical reactions and enzymes that allow cells to convert raw materials into molecules necessary for the cell's survival. Metabolic engineering specifically seeks to mathematically model these networks, calculate a yield of useful products, and pin point parts of the network that constrain the production of these products. Genetic engineering techniques can then be used to modify the network in order to relieve these constraints. Once again this modified network can be modeled to calculate the new product yield.
The ultimate goal of metabolic engineering is to be able to use these organisms to produce valuable substances on an industrial scale in a cost-effective manner. Current examples include producing beer, wine, cheese, pharmaceuticals, and other biotechnology products. Some of the common strategies used for metabolic engineering are (1) overexpressing the gene encoding the rate-limiting enzyme of the biosynthetic pathway, (2) blocking the competing metabolic pathways, (3) heterologous gene expression, and (4) enzyme engineering.
Since cells use these metabolic networks for their survival, changes can have drastic effects on the cells' viability. Therefore, trade-offs in metabolic engineering arise between the cells ability to produce the desired substance and its natural survival needs. Therefore, instead of directly deleting and/or overexpressing the genes that encode for metabolic enzymes, the current focus is to target the regulatory networks in a cell to efficiently engineer the metabolism.
In the past, to increase the productivity of a desired metabolite, a microorganism was genetically modified by chemically induced mutation, and the mutant strain that overexpressed the desired metabolite was then chosen.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Immunoengineering is an emerging field where engineering principles are grounded in immunology. This course provides students a broad overview of how engineering approaches can be utilized to study im
Biochemistry is a key discipline in the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aims to understand in molecular terms the processes that make life poss
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
A fungus (: fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from the other eukaryotic kingdoms, which, by one traditional classification, includes Plantae, Animalia, Protozoa, and Chromista. A characteristic that places fungi in a different kingdom from plants, bacteria, and some protists is chitin in their cell walls.
Synthetic biology (SynBio) is a multidisciplinary field of science that focuses on living systems and organisms, and it applies engineering principles to develop new biological parts, devices, and systems or to redesign existing systems found in nature. It is a branch of science that encompasses a broad range of methodologies from various disciplines, such as biotechnology, biomaterials, material science/engineering, genetic engineering, molecular biology, molecular engineering, systems biology, membrane science, biophysics, chemical and biological engineering, electrical and computer engineering, control engineering and evolutionary biology.
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
In the beginning was the metabolism. The biochemical processes that make life possible transformed the soup of chemicals into the life on Earth we know today. Since then, living organisms have evolved, and life on Earth has become more complex. Living orga ...
The metabolic engineering community relies on computational methods for pathway design to produce important small molecules in microbial hosts. Metabolic network databases are continuously curated and updated with known and novel reactions that expand the ...
CURRENT BIOLOGY LTD2022
Automating experimental procedures has resulted in an unprecedented increase in the volume of generated data, which, in turn, has caused an accumulation of unprocessed data. As a result, the need to develop tools to analyze data systematically has been ris ...