A voltage source is a two-terminal device which can maintain a fixed voltage. An ideal voltage source can maintain the fixed voltage independent of the load resistance or the output current. However, a real-world voltage source cannot supply unlimited current.
A voltage source is the dual of a current source. Real-world sources of electrical energy, such as batteries and generators, can be modeled for analysis purposes as a combination of an ideal voltage source and additional combinations of impedance elements.
An ideal voltage source is a two-terminal device that maintains a fixed voltage drop across its terminals. It is often used as a mathematical abstraction that simplifies the analysis of real electric circuits. If the voltage across an ideal voltage source can be specified independently of any other variable in a circuit, it is called an independent voltage source. Conversely, if the voltage across an ideal voltage source is determined by some other voltage or current in a circuit, it is called a dependent or controlled voltage source. A mathematical model of an amplifier will include dependent voltage sources whose magnitude is governed by some fixed relation to an input signal, for example. In the analysis of faults on electrical power systems, the whole network of interconnected sources and transmission lines can be usefully replaced by an ideal (AC) voltage source and a single equivalent impedance.
|- align="center"
|style="padding: 1em 2em 0;"|
|style="padding: 1em 2em 0;"|
|- align="center"
| Ideal Voltage Source
| Ideal Current Source
|- align="center"
|style="padding: 1em 2em 0;"|
|style="padding: 1em 2em 0;"|
|- align="center"
| Controlled Voltage Source
| Controlled Current Source
|- align="center"
|style="padding: 1em 2em 0;"|
|style="padding: 1em 2em 0;"|
|- align="center"
| Battery of cells
| Single cell
The internal resistance of an ideal voltage source is zero; it is able to supply or absorb any amount of current. The current through an ideal voltage source is completely determined by the external circuit.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
Découvrez les circuits électriques linéaires. Apprenez à les maîtriser et à les résoudre, dans un premier temps en régime continu puis en régime alternatif.
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
As originally stated in terms of direct-current resistive circuits only, Thévenin's theorem states that "Any linear electrical network containing only voltage sources, current sources and resistances can be replaced at terminals A–B by an equivalent combination of a voltage source Vth in a series connection with a resistance Rth." The equivalent voltage Vth is the voltage obtained at terminals A–B of the network with terminals A–B open circuited.
An electrical load is an electrical component or portion of a circuit that consumes (active) electric power, such as electrical appliances and lights inside the home. The term may also refer to the power consumed by a circuit. This is opposed to a power source, such as a battery or generator, which produces power. The term is used more broadly in electronics for a device connected to a signal source, whether or not it consumes power.
A current source is an electronic circuit that delivers or absorbs an electric current which is independent of the voltage across it. A current source is the dual of a voltage source. The term current sink is sometimes used for sources fed from a negative voltage supply. Figure 1 shows the schematic symbol for an ideal current source driving a resistive load. There are two types. An independent current source (or sink) delivers a constant current. A dependent current source delivers a current which is proportional to some other voltage or current in the circuit.
Owing to the advancements in the area of power electronics, efficient and flexible ac to dc conversion is made possible, bringing back into focus the idea of the dc power transmission at various voltage levels. Several technical and economical factors advo ...
Label-free biosensors, combined with miniaturized micro-electromechanical sensory platforms, offer an attractive solution for real-time and facile monitoring of biomolecules due to their high sensitivity and selectivity without the need for specifically la ...
In traditional power delivery networks, the on-chip supply voltage is provided by board-level converters. Due to the significant distance between the converter and the load, variations in the load current are not effectively managed, producing a significan ...