Résumé
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals. Polynomial irreducibility can be considered for polynomials with coefficients in an integral domain, and there are two common definitions. Most often, a polynomial over an integral domain R is said to be irreducible if it is not the product of two polynomials that have their coefficients in R, and that are not unit in R. Equivalently, for this definition, an irreducible polynomial is an irreducible element in the rings of polynomials over R. If R is a field, the two definitions of irreducibility are equivalent. For the second definition, a polynomial is irreducible if it cannot be factored into polynomials with coefficients in the same domain that both have a positive degree. Equivalently, a polynomial is irreducible if it is irreducible over the field of fractions of the integral domain. For example, the polynomial is irreducible for the second definition, and not for the first one. On the other hand, is irreducible in for the two definitions, while it is reducible in A polynomial that is irreducible over any field containing the coefficients is absolutely irreducible. By the fundamental theorem of algebra, a univariate polynomial is absolutely irreducible if and only if its degree is one.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (5)

Jordan blocks of unipotent elements in some irreducible representations of classical groups in good characteristic

Mikko Tapani Korhonen

Let G G be a classical group with natural module V V over an algebraically closed field of good characteristic. For every unipotent element u u of G G, we describe the Jordan block sizes of u u o
2019

Reductive overgroups of distinguished unipotent elements in simple algebraic groups

Mikko Tapani Korhonen

Let GG be a simple linear algebraic group over an algebraically closed field KK of characteristic p0p \geq 0. In this thesis, we investigate closed connected reductive subgroups X<GX < G that contain
EPFL2018

Invariant forms on irreducible modules of simple algebraic groups

Mikko Tapani Korhonen

Let G be a simple linear algebraic group over an algebraically dosed field K of characteristic p >= 0 and let V be an irreducible rational G-module with highest weight A. When is self-dual, a basic qu
Elsevier2017
Afficher plus
Concepts associés (68)
Polynôme formel
En algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Théorème fondamental de l'algèbre
En mathématiques, le théorème fondamental de l'algèbre, aussi appelé théorème de d'Alembert-Gauss et théorème de d'Alembert, indique que tout polynôme non constant, à coefficients complexes, admet au moins une racine. En conséquence, tout polynôme à coefficients entiers, rationnels ou encore réels admet au moins une racine complexe, car ces nombres sont aussi des complexes. Une fois ce résultat établi, il devient simple de montrer que sur C, le corps des nombres complexes, tout polynôme P est scindé, c'est-à-dire constant ou produit de polynômes de degré 1.
Polynôme irréductible
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients.
Afficher plus
Cours associés (21)
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
MATH-310: Algebra
Study basic concepts of modern algebra: groups, rings, fields.
MATH-643: Applied l-adic cohomology
In this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb
Afficher plus
Séances de cours associées (202)
Intégrales généralisées : cas élémentaires
Explore les cas élémentaires d'intégrales généralisées, les critères de convergence et l'interprétation des intégrales de type i et ii.
Formule du caractère de la weyl
Explore la preuve de la formule de caractère de Weyl pour les représentations tridimensionnelles des algèbres semi-simples de Lie.
Kirillov Paradigm pour le groupe Heisenberg
Explore le paradigme Kirillov pour le groupe Heisenberg et les représentations unitaires.
Afficher plus
MOOCs associés (9)
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus