Pierre de FermatPierre de Fermat (pjɛʁ də fɛʁma; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his discovery of an original method of finding the greatest and the smallest ordinates of curved lines, which is analogous to that of differential calculus, then unknown, and his research into number theory.
Cole PrizeThe Frank Nelson Cole Prize, or Cole Prize for short, is one of twenty-two prizes awarded to mathematicians by the American Mathematical Society, one for an outstanding contribution to algebra, and the other for an outstanding contribution to number theory. The prize is named after Frank Nelson Cole, who served the Society for 25 years. The Cole Prize in algebra was funded by Cole himself, from funds given to him as a retirement gift; the prize fund was later augmented by his son, leading to the double award.
Modularity theoremThe modularity theorem (formerly called the Taniyama–Shimura conjecture, Taniyama-Weil conjecture or modularity conjecture for elliptic curves) states that elliptic curves over the field of rational numbers are related to modular forms. Andrew Wiles proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001.
Algebraic number theoryAlgebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.
Iwasawa theoryIn number theory, Iwasawa theory is the study of objects of arithmetic interest over infinite towers of number fields. It began as a Galois module theory of ideal class groups, initiated by (岩澤 健吉), as part of the theory of cyclotomic fields. In the early 1970s, Barry Mazur considered generalizations of Iwasawa theory to abelian varieties. More recently (early 1990s), Ralph Greenberg has proposed an Iwasawa theory for motives.
Cyclotomic fieldIn number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to Q, the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's Last Theorem. It was in the process of his deep investigations of the arithmetic of these fields (for prime n) – and more precisely, because of the failure of unique factorization in their rings of integers – that Ernst Kummer first introduced the concept of an ideal number and proved his celebrated congruences.
P-adic numberIn number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to (possibly infinite) decimals, but with digits based on a prime number p rather than ten, and extending (possibly infinitely) to the left rather than to the right.
DiophantusDiophantus of Alexandria (born AD 200-214; died AD 284-298) was a Greek mathematician, who was the author of a series of books called Arithmetica, many of which are now lost. His texts deal with solving algebraic equations. Diophantine equations, Diophantine geometry, and Diophantine approximations are subareas of Number theory that are named after him. Diophantus coined the term παρισότης (parisotes) to refer to an approximate equality.
Yutaka Taniyamawas a Japanese mathematician known for the Taniyama–Shimura conjecture. Taniyama was best known for conjecturing, in modern language, automorphic properties of L-functions of elliptic curves over any number field. A partial and refined case of this conjecture for elliptic curves over rationals is called the Taniyama–Shimura conjecture or the modularity theorem whose statement he subsequently refined in collaboration with Goro Shimura. The names Taniyama, Shimura and Weil have all been attached to this conjecture, but the idea is essentially due to Taniyama.
Goro Shimurawas a Japanese mathematician and Michael Henry Strater Professor Emeritus of Mathematics at Princeton University who worked in number theory, automorphic forms, and arithmetic geometry. He was known for developing the theory of complex multiplication of abelian varieties and Shimura varieties, as well as posing the Taniyama–Shimura conjecture which ultimately led to the proof of Fermat's Last Theorem. Gorō Shimura was born in Hamamatsu, Japan, on 23 February 1930. Shimura graduated with a B.A. in mathematics and a D.