Pierre de FermatPierre de Fermat, né dans la première décennie du , à Beaumont-de-Lomagne (département actuel de Tarn-et-Garonne), près de Montauban, et mort le à Castres (département actuel du Tarn), est un magistrat, polymathe et surtout mathématicien français, surnommé « le prince des amateurs ». Il est aussi poète, habile latiniste et helléniste, et s'est intéressé aux sciences et en particulier à la physique ; on lui doit notamment le principe de Fermat en optique.
Prix Frank-Nelson-ColeLe prix Frank-Nelson-Cole, ou plus simplement prix Cole, fait partie des récompenses décernées par l'American Mathematical Society (AMS). Le prix Cole est en réalité double : un des prix couronne une contribution remarquable en algèbre, tandis qu'un second prix distingue une contribution remarquable en théorie des nombres. Le prix est ainsi nommé en l'honneur du mathématicien américain Frank Nelson Cole (1861-1926), par ailleurs membre de l'AMS pendant plus de vingt-cinq ans.
Théorème de modularitéLe théorème de modularité (auparavant appelé conjecture de Taniyama-Weil ou conjecture de Shimura-Taniyama-Weil ou conjecture de Shimura-Taniyama) énonce que, pour toute courbe elliptique sur Q, il existe une forme modulaire de poids 2 pour un Γ(N), ayant même fonction L que la courbe elliptique. Une grande partie de ce résultat, suffisante pour en déduire le dernier théorème de Fermat, a été démontrée par Andrew Wiles. S'inspirant de ses techniques, Christophe Breuil, Brian Conrad, Fred Diamond et Richard Taylor ont traité les cas restants en 1999.
Théorie algébrique des nombresEn mathématiques, la théorie algébrique des nombres est la branche de la théorie des nombres utilisant des outils issus de l'algèbre. Son origine est l'étude des nombres entiers et particulièrement les équations diophantiennes. Pour en résoudre certaines, il est utile de considérer d'autres entiers, dits algébriques. Un exemple est donné par le théorème des deux carrés de Fermat utilisant les entiers de Gauss. Ces ensembles sont équipés de deux lois — une addition et une multiplication — qui vérifient les mêmes propriétés élémentaires que les entiers relatifs : on parle d'anneaux.
Théorie d'IwasawaLa théorie d'Iwasawa peut être vue comme une tentative d'étendre les résultats arithmétiques classiques sur les corps de nombres (extensions finies du corps des rationnels) à des extensions infinies de , par des procédés de passage à la limite des extensions finies vers les extensions infinies. Les objets de base de la théorie d'Iwasawa sont les -extensions ; c'est-à-dire des extensions galoisiennes dont le groupe de Galois est le groupe profini , pour un nombre premier fixé.
Extension cyclotomiqueEn théorie algébrique des nombres, on appelle extension cyclotomique du corps Q des nombres rationnels tout corps de rupture d'un polynôme cyclotomique, c'est-à-dire tout corps de la forme Q(ζ) où ζ est une racine de l'unité. Ces corps jouent un rôle crucial, d'une part dans la compréhension de certaines équations diophantiennes : par exemple, l'arithmétique (groupe des classes, notamment) de leur anneau des entiers permet de montrer le dernier théorème de Fermat dans de nombreux cas (voir nombre premier régulier) ; mais aussi, dans la compréhension des extensions algébriques de Q, ce qui peut être considéré comme une version abstraite du problème précédent : le théorème de Kronecker-Weber, par exemple, assure que toute extension abélienne est contenue dans une extension cyclotomique.
Nombre p-adiquevignette|Les entiers 3-adiques, avec des représentations obtenues par dualité de Pontriaguine. En mathématiques, et plus particulièrement en théorie des nombres, pour un nombre premier fixé, les nombres p-adiques forment une extension particulière du corps des nombres rationnels, découverte par Kurt Hensel en 1897. Le corps commutatif des nombres -adiques peut être construit par complétion de , d'une façon analogue à la construction des nombres réels par les suites de Cauchy, mais pour une valeur absolue moins familière, nommée valeur absolue -adique.
Diophante d'AlexandrieDiophante d'Alexandrie (en grec ancien : Διόφαντος ὁ Ἀλεξανδρεύς Dióphantos ho Alexandreús) était un mathématicien de langue grecque qui a vécu à Alexandrie entre le et le , peut-être au ou au . Connu pour ses Arithmétiques, ouvrage dont une partie est aujourd'hui perdue, et où il étudie certaines équations diophantiennes, il est parfois surnommé le « père de l'algèbre ». On ne connaît rien ou à peu près de la vie de Diophante, même l'époque à laquelle il a vécu reste très incertaine. Il vécut à Alexandrie.
Yutaka TaniyamaYutaka Taniyama (谷山 豊), né le et mort le , est un mathématicien japonais connu pour la conjecture Taniyama-Shimura. Les noms Taniyama, Shimura et Weil ont tous les trois été attachés à cette conjecture mais l'idée vient principalement de Taniyama. En 1986, Ken Ribet démontra que si la conjecture de Shimura-Taniyama-Weil était prouvée, le dernier théorème de Fermat le serait également. Andrew Wiles travailla en secret sur la conjecture pendant des années et parvint à en démontrer un cas particulier suffisant à prouver le dernier théorème de Fermat.
Gorō ShimuraGorō Shimura (japonais : 志村 五郎 Shimura Gorō), né le à Hamamatsu et mort le , est un mathématicien japonais naturalisé américain. Il termine comme professeur émérite de mathématiques (l'ancienne chaire Michael Henry Strater Chair) à l'université de Princeton. Il est connu d'un plus large public par la conjecture de Shimura-Taniyama-Weil, qui est reliée au dernier théorème de Fermat et qui a été démontrée par Andrew Wiles, après onze ans de travaux, en 1995. It is published from Iwanami Shoten in Japan.