Related concepts (24)
Differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
Sheaf (mathematics)
In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).
One-form (differential geometry)
In differential geometry, a one-form on a differentiable manifold is a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold is a smooth mapping of the total space of the tangent bundle of to whose restriction to each fibre is a linear functional on the tangent space. Symbolically, where is linear. Often one-forms are described locally, particularly in local coordinates. In a local coordinate system, a one-form is a linear combination of the differentials of the coordinates: where the are smooth functions.
Pullback (differential geometry)
Let be a smooth map between smooth manifolds and . Then there is an associated linear map from the space of 1-forms on (the linear space of sections of the cotangent bundle) to the space of 1-forms on . This linear map is known as the pullback (by ), and is frequently denoted by . More generally, any covariant tensor field – in particular any differential form – on may be pulled back to using . When the map is a diffeomorphism, then the pullback, together with the pushforward, can be used to transform any tensor field from to or vice versa.
Tautological one-form
In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle of a manifold In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus providing a bridge between Lagrangian mechanics and Hamiltonian mechanics (on the manifold ). The exterior derivative of this form defines a symplectic form giving the structure of a symplectic manifold. The tautological one-form plays an important role in relating the formalism of Hamiltonian mechanics and Lagrangian mechanics.
Symplectic manifold
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds.
Hamiltonian mechanics
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a link between classical and quantum mechanics.
Vector bundle
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space (for example could be a topological space, a manifold, or an algebraic variety): to every point of the space we associate (or "attach") a vector space in such a way that these vector spaces fit together to form another space of the same kind as (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over .
Symplectic vector space
In mathematics, a symplectic vector space is a vector space V over a field F (for example the real numbers R) equipped with a symplectic bilinear form. A symplectic bilinear form is a mapping ω : V × V → F that is Bilinear Linear in each argument separately; Alternating ω(v, v) = 0 holds for all v ∈ V; and Non-degenerate ω(u, v) = 0 for all v ∈ V implies that u = 0. If the underlying field has characteristic not 2, alternation is equivalent to skew-symmetry. If the characteristic is 2, the skew-symmetry is implied by, but does not imply alternation.
Cotangent space
In differential geometry, the cotangent space is a vector space associated with a point on a smooth (or differentiable) manifold ; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, is defined as the dual space of the tangent space at , , although there are more direct definitions (see below). The elements of the cotangent space are called cotangent vectors or tangent covectors. All cotangent spaces at points on a connected manifold have the same dimension, equal to the dimension of the manifold.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.