Concept

Organic electronics

Summary
Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic molecules or polymers that show desirable electronic properties such as conductivity. Unlike conventional inorganic conductors and semiconductors, organic electronic materials are constructed from organic (carbon-based) molecules or polymers using synthetic strategies developed in the context of organic chemistry and polymer chemistry. One of the promised benefits of organic electronics is their potential low cost compared to traditional electronics. Attractive properties of polymeric conductors include their electrical conductivity (which can be varied by the concentrations of dopants) and comparatively high mechanical flexibility. Challenges to the implementation of organic electronic materials are their inferior thermal stability, high cost, and diverse fabrication issues. Electrically conductive polymers Traditional conductive materials are inorganic, especially metals such as copper and aluminum as well as many alloys. In 1862 Henry Letheby described polyaniline, which was subsequently shown to be electrically conductive. Work on other polymeric organic materials began in earnest in the 1960s. For example in 1963, a derivative of tetraiodopyrrole was shown to exhibit conductivity of 1 S/cm (S = Siemens). In 1977, it was discovered that oxidation enhanced the conductivity of polyacetylene. The 2000 Nobel Prize in Chemistry was awarded to Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa jointly for their work on polyacetylene and related conductive polymers. Many families of electrically conducting polymers have been identified including polythiophene, polyphenylene sulfide, and others. J.E. Lilienfeld first proposed the field-effect transistor in 1930, but the first OFET was not reported until 1987, when Koezuka et al. constructed one using Polythiophene which shows extremely high conductivity.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.