Quantum field theoryIn theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles.
Goldstone bosonIn particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu in particle physics within the context of the BCS superconductivity mechanism, and subsequently elucidated by Jeffrey Goldstone, and systematically generalized in the context of quantum field theory. In condensed matter physics such bosons are quasiparticles and are known as Anderson–Bogoliubov modes.
Canonical quantizationIn physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory, to the greatest extent possible. Historically, this was not quite Werner Heisenberg's route to obtaining quantum mechanics, but Paul Dirac introduced it in his 1926 doctoral thesis, the "method of classical analogy" for quantization, and detailed it in his classic text Principles of Quantum Mechanics.
Landau poleIn physics, the Landau pole (or the Moscow zero, or the Landau ghost) is the momentum (or energy) scale at which the coupling constant (interaction strength) of a quantum field theory becomes infinite. Such a possibility was pointed out by the physicist Lev Landau and his colleagues. The fact that couplings depend on the momentum (or length) scale is the central idea behind the renormalization group. Landau poles appear in theories that are not asymptotically free, such as quantum electrodynamics (QED) or φ4 theory—a scalar field with a quartic interaction—such as may describe the Higgs boson.
Noether's theoremNoether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries over physical space.
Algebra of physical spaceIn physics, the algebra of physical space (APS) is the use of the Clifford or geometric algebra Cl3,0(R) of the three-dimensional Euclidean space as a model for (3+1)-dimensional spacetime, representing a point in spacetime via a paravector (3-dimensional vector plus a 1-dimensional scalar). The Clifford algebra Cl3,0(R) has a faithful representation, generated by Pauli matrices, on the spin representation C2; further, Cl3,0(R) is isomorphic to the even subalgebra Cl(R) of the Clifford algebra Cl3,1(R).
Raoul BottRaoul Bott (September 24, 1923 – December 20, 2005) was a Hungarian-American mathematician known for numerous foundational contributions to geometry in its broad sense. He is best known for his Bott periodicity theorem, the Morse–Bott functions which he used in this context, and the Borel–Bott–Weil theorem. Bott was born in Budapest, Hungary, the son of Margit Kovács and Rudolph Bott. His father was of Austrian descent, and his mother was of Hungarian Jewish descent; Bott was raised a Catholic by his mother and stepfather.
Gauge bosonIn particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of gauge bosons, usually as virtual particles. Photons, W and Z bosons, and gluons are gauge bosons. All known gauge bosons have a spin of 1; for comparison, the Higgs boson has spin zero and the hypothetical graviton has a spin of 2. Therefore, all known gauge bosons are vector bosons.
General covarianceIn theoretical physics, general covariance, also known as diffeomorphism covariance or general invariance, consists of the invariance of the form of physical laws under arbitrary differentiable coordinate transformations. The essential idea is that coordinates do not exist a priori in nature, but are only artifices used in describing nature, and hence should play no role in the formulation of fundamental physical laws. While this concept is exhibited by general relativity, which describes the dynamics of spacetime, one should not expect it to hold in less fundamental theories.
Adjoint bundleIn mathematics, an adjoint bundle is a vector bundle naturally associated to any principal bundle. The fibers of the adjoint bundle carry a Lie algebra structure making the adjoint bundle into a (nonassociative) algebra bundle. Adjoint bundles have important applications in the theory of connections as well as in gauge theory. Let G be a Lie group with Lie algebra , and let P be a principal G-bundle over a smooth manifold M. Let be the (left) adjoint representation of G.