Adoptive cell transfer (ACT) is the transfer of cells into a patient. The cells may have originated from the patient or from another individual. The cells are most commonly derived from the immune system with the goal of improving immune functionality and characteristics. In autologous cancer immunotherapy, T cells are extracted from the patient, genetically modified and cultured in vitro and returned to the same patient. Comparatively, allogeneic therapies involve cells isolated and expanded from a donor separate from the patient receiving the cells.
In the 1960s, lymphocytes were discovered to be the mediators of allograft rejection in animals. Attempts to use T cells to treat transplanted murine tumors required cultivating and manipulating T cells in culture. Syngeneic lymphocytes were transferred from rodents heavily immunized against the tumor to inhibit growth of small established tumors, becoming the first example of ACT.
Description of T cell growth factor interleukin-2 (IL-2) in 1976 allowed T lymphocytes to be grown in vitro, often without loss of effector functions. High doses of IL-2 could inhibit tumor growth in mice. 1982, studies demonstrated that intravenous immune lymphocytes could treat bulky subcutaneous FBL3 lymphomas. Administration of IL-2 after cell transfer enhanced therapeutic potential.
In 1985 IL-2 administration produced durable tumor regressions in some patients with metastatic melanoma. Lymphocytes infiltrating the stroma of growing, transplantable tumors provided a concentrated source of tumor-infiltrating lymphocytes (TIL) and could stimulate regression of established lung and liver tumors. In 1986, human TILs from resected melanomas were found to contain cells that could recognize autologous tumors. In 1988 autologous TILs were shown to reduce metastatic melanoma tumors. Tumor-derived TILs are generally mixtures of CD8+ and CD4+ T cells with few major contaminating cells.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Immunoengineering is an emerging field where engineering principles are grounded in immunology. This course provides students a broad overview of how engineering approaches can be utilized to study im
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
The students acquire advanced level knowledge regarding the functioning of the (vertebrate) immune system. A strong focus is placed on the molecular mechanisms underlying innate and adaptive immune re
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
In biology, chimeric antigen receptors (CARs)—also known as chimeric immunoreceptors, chimeric T cell receptors or artificial T cell receptors—are receptor proteins that have been engineered to give T cells the new ability to target a specific antigen. The receptors are chimeric in that they combine both antigen-binding and T cell activating functions into a single receptor. CAR T cell therapy uses T cells engineered with CARs to treat cancer.
Tisagenlecleucel, sold under the brand name Kymriah, is a CAR T cells medication for the treatment of B-cell acute lymphoblastic leukemia (ALL) which uses the body's own T cells to fight cancer (adoptive cell transfer). Serious side effects occur in most patients. The most common serious side effects are cytokine release syndrome (a potentially life-threatening condition that can cause fever, vomiting, shortness of breath, pain and low blood pressure) and decreases in platelets (components that help the blood to clot), hemoglobin (the protein found in red blood cells that carries oxygen around the body) or white blood cells including neutrophils and lymphocytes.
Cancer immunotherapy (sometimes called immuno-oncology) is the stimulation of the immune system to treat cancer, improving on the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology. Cancer immunotherapy exploits the fact that cancer cells often have tumor antigens, molecules on their surface that can be detected by the antibody proteins of the immune system, binding to them.
The advent of immunotherapy, such as immune checkpoint blockade (ICB) and adoptive transfer of cytotoxic lymphocytes, has transformed the clinical care of cancer. However, a significant proportion of patients are resistant to immunotherapy or experience re ...
The present invention relates generally to the field of anti-cancer therapy, in particular to the use of agents or co-agents useful in anti-cancer immunotherapy such as adoptive T-cell transfer (ACT) immunotherapy and immune check-point blockades. ...
Inflammation stands as a dynamic and intricate biological process, promoting vital defence mechanisms against harmful stimuli, including infections and injuries, to drive pathogen clearance and healing. On one hand, these responses can manifest acutely and ...