Summary
Bio-mechatronics is an applied interdisciplinary science that aims to integrate biology and mechatronics (electrical, electronics, and mechanical engineering). It also encompasses the fields of robotics and neuroscience. Biomechatronic devices cover a wide range of applications, from developing prosthetic limbs to engineering solutions concerning respiration, vision, and the cardiovascular system. Bio-mechatronics mimics how the human body works. For example, four different steps must occur to lift the foot to walk. First, impulses from the motor center brain's motor centerbrain are sent to the foot and leg muscles. Next, the nerve cells in the feet send information, providing feedback to the brain, enabling it to adjust the muscle groups or amount of force required to walk across the ground. Different amounts of energy are applied depending on the type of surface being walked across. The leg's muscle spindle nerve cells then sense and send the position of the floor back up to the brain. Finally, when the foot is raised to step, signals are sent to muscles in the leg and foot to set it down. Biosensors detect what the user wants to do or their intentions and motions. In some devices, the information can is relayed by the user's nervous or muscle system. This information is related by the biosensor to a controller , which can be located inside or outside the biomechatronic device. In addition biosensors receive information about the limb position and force from the limb and actuator. Biosensors come in a variety of forms. They can be wires which detect electrical activity, needle electrodes implanted in muscles, and electrode arrays with nerves growing through them. The purpose of the mechanical sensors is to measure information about the biomechatronic device and relate that information to the biosensor or controller. Additionally, many sensors are being used at schools, such as Case Western Reserve University, the University of Pittsburgh, Johns Hopkins University, among others, with the goal of recording physical stimuli and converting them to neural signals for a subarea of bio-mechatronics called neuro-mechatronics.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (50)