In mathematical analysis, the Kakutani fixed-point theorem is a fixed-point theorem for set-valued functions. It provides sufficient conditions for a set-valued function defined on a convex, compact subset of a Euclidean space to have a fixed point, i.e. a point which is mapped to a set containing it. The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean spaces. Kakutani's theorem extends this to set-valued functions. The theorem was developed by Shizuo Kakutani in 1941, and was used by John Nash in his description of Nash equilibria. It has subsequently found widespread application in game theory and economics. Kakutani's theorem states: Let S be a non-empty, compact and convex subset of some Euclidean space Rn. Let φ: S → 2S be a set-valued function on S with the following properties: φ has a closed graph; φ(x) is non-empty and convex for all x ∈ S. Then φ has a fixed point. Set-valued function A set-valued function φ from the set X to the set Y is some rule that associates one or more points in Y with each point in X. Formally it can be seen just as an ordinary function from X to the power set of Y, written as φ: X → 2Y, such that φ(x) is non-empty for every . Some prefer the term correspondence, which is used to refer to a function that for each input may return many outputs. Thus, each element of the domain corresponds to a subset of one or more elements of the range. Closed graph A set-valued function φ: X → 2Y is said to have a closed graph if the set {(x,y) | y ∈ φ(x)} is a closed subset of X × Y in the product topology i.e. for all sequences and such that , and for all , we have . Fixed point Let φ: X → 2X be a set-valued function. Then a ∈ X is a fixed point of φ if a ∈ φ(a).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
MATH-416: Abstract analysis on groups
We study analytic phenomena on groups, notably paradoxical decompositions, fixed point properties and harmonic functions.
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to holography, the modern approach to quantum gravity.
PHYS-512: Statistical physics of computation
The students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
Show more
Related publications (103)
Related concepts (3)
Fixed-point theorem
In mathematics, a fixed-point theorem is a result saying that a function F will have at least one fixed point (a point x for which F(x) = x), under some conditions on F that can be stated in general terms. The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point.
Brouwer fixed-point theorem
Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function mapping a nonempty compact convex set to itself there is a point such that . The simplest forms of Brouwer's theorem are for continuous functions from a closed interval in the real numbers to itself or from a closed disk to itself. A more general form than the latter is for continuous functions from a nonempty convex compact subset of Euclidean space to itself.
Nash equilibrium
In game theory, the Nash equilibrium, named after the mathematician John Nash, is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no one has anything to gain by changing only one's own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs.
Related MOOCs (4)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.