Concept

Failure of electronic components

Electronic components have a wide range of failure modes. These can be classified in various ways, such as by time or cause. Failures can be caused by excess temperature, excess current or voltage, ionizing radiation, mechanical shock, stress or impact, and many other causes. In semiconductor devices, problems in the device package may cause failures due to contamination, mechanical stress of the device, or open or short circuits. Failures most commonly occur near the beginning and near the ending of the lifetime of the parts, resulting in the bathtub curve graph of failure rates. Burn-in procedures are used to detect early failures. In semiconductor devices, parasitic structures, irrelevant for normal operation, become important in the context of failures; they can be both a source and protection against failure. Applications such as aerospace systems, life support systems, telecommunications, railway signals, and computers use great numbers of individual electronic components. Analysis of the statistical properties of failures can give guidance in designs to establish a given level of reliability. For example, power-handling ability of a resistor may be greatly derated when applied in high-altitude aircraft to obtain adequate service life. A sudden fail-open fault can cause multiple secondary failures if it is fast and the circuit contains an inductance; this causes large voltage spikes, which may exceed 500 volts. A broken metallisation on a chip may thus cause secondary overvoltage damage. Thermal runaway can cause sudden failures including melting, fire or explosions. The majority of electronic parts failures are packaging-related. Packaging, as the barrier between electronic parts and the environment, is very susceptible to environmental factors. Thermal expansion produces mechanical stresses that may cause material fatigue, especially when the thermal expansion coefficients of the materials are different. Humidity and aggressive chemicals can cause corrosion of the packaging materials and leads, potentially breaking them and damaging the inside parts, leading to electrical failure.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.