Structural geology is the study of the three-dimensional distribution of rock units with respect to their deformational histories. The primary goal of structural geology is to use measurements of present-day rock geometries to uncover information about the history of deformation (strain) in the rocks, and ultimately, to understand the stress field that resulted in the observed strain and geometries. This understanding of the dynamics of the stress field can be linked to important events in the geologic past; a common goal is to understand the structural evolution of a particular area with respect to regionally widespread patterns of rock deformation (e.g., mountain building, rifting) due to plate tectonics.
The study of geologic structures has been of prime importance in economic geology, both petroleum geology and mining geology. Folded and faulted rock strata commonly form traps that accumulate and concentrate fluids such as petroleum and natural gas. Similarly, faulted and structurally complex areas are notable as permeable zones for hydrothermal fluids, resulting in concentrated areas of base and precious metal ore deposits. Veins of minerals containing various metals commonly occupy faults and fractures in structurally complex areas. These structurally fractured and faulted zones often occur in association with intrusive igneous rocks. They often also occur around geologic reef complexes and collapse features such as ancient sinkholes. Deposits of gold, silver, copper, lead, zinc, and other metals, are commonly located in structurally complex areas.
Structural geology is a critical part of engineering geology, which is concerned with the physical and mechanical properties of natural rocks. Structural fabrics and defects such as faults, folds, foliations and joints are internal weaknesses of rocks which may affect the stability of human engineered structures such as dams, road cuts, open pit mines and underground mines or road tunnels.
Geotechnical risk, including earthquake risk can only be investigated by inspecting a combination of structural geology and geomorphology.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Objective is to provide an understanding of the problems in geo-energy projects. Underground as storage medium for carbon dioxide, heat storage and radioactive waste and as energy source like deep geo
Les ingénieurs civils exercent leurs activités en constante interaction avec le sous-sol.
Le cours de géologie donne aux étudiants les bases en Géosciences nécessaires à une ingénierie bien intégrée d
This course advances geomechanics knowledge, focusing on lab tests, in situ & geophysical investigations for interpreting geotechnical projects. Practical modules cover rock physics, mechanics, boreho
Delves into the significance of wet sand behavior in different fields and the experimental study of sand pile strength with added water.
Covers the principles and procedures of triaxial tests and their result interpretation.
Introduces the basics of Earth observation, including optical remote sensing principles, sensor types, historical evolution, and applications in geology, agriculture, forestry, and urban planning.
Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus (organic matter). The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes.
In geology, a bed is a layer of sediment, sedimentary rock, or volcanic rock "bounded above and below by more or less well-defined bedding surfaces". Specifically in sedimentology, a bed can be defined in one of two major ways. First, Campbell and Reineck and Singh use the term bed to refer to a thickness-independent layer comprising a coherent layer of sedimentary rock, sediment, or pyroclastic material bounded above and below by surfaces known as bedding planes.
In structural geology, a fold is a stack of originally planar surfaces, such as sedimentary strata, that are bent or curved ("folded") during permanent deformation. Folds in rocks vary in size from microscopic crinkles to mountain-sized folds. They occur as single isolated folds or in periodic sets (known as fold trains). Synsedimentary folds are those formed during sedimentary deposition. Folds form under varied conditions of stress, pore pressure, and temperature gradient, as evidenced by their presence in soft sediments, the full spectrum of metamorphic rocks, and even as primary flow structures in some igneous rocks.
Whether used to enhance the hydrocarbon production from low permeability rocks or to measure the minimum in-situ principal stress in rock formations, height growth of a hydraulic fracture above the formation of interest is a key metric for the design of su ...
2023
, ,
Laboratory experiments have been carried out to investigate the growth of hydraulic fracture (HF) in an anisotropic rock with pre-existing discontinuities such as bedding planes and veins. The experiments are designed in light of scaling relationships that ...
In hydrogeology, it is often difficult to fully understand the hydraulic factors affecting the recharge of groundwater systems. Particularly, at a regional scale, the groundwater system can have different drivers depending on the considered area, i.e., soi ...