Direct sumThe direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups and is another abelian group consisting of the ordered pairs where and . To add ordered pairs, we define the sum to be ; in other words addition is defined coordinate-wise.
EndomorphismIn mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space V is a linear map f: V → V, and an endomorphism of a group G is a group homomorphism f: G → G. In general, we can talk about endomorphisms in any . In the , endomorphisms are functions from a set S to itself. In any category, the composition of any two endomorphisms of X is again an endomorphism of X.
Division ringIn algebra, a division ring, also called a skew field, is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element a has a multiplicative inverse, that is, an element usually denoted a^–1, such that a a^–1 = a^–1 a = 1. So, (right) division may be defined as a / b = a b–1, but this notation is avoided, as one may have a b^–1 ≠ b^–1 a. A commutative division ring is a field.
Linear spanIn mathematics, the linear span (also called the linear hull or just span) of a set S of vectors (from a vector space), denoted span(S), is defined as the set of all linear combinations of the vectors in S. For example, two linearly independent vectors span a plane. The linear span can be characterized either as the intersection of all linear subspaces that contain S, or as the smallest subspace containing S. The linear span of a set of vectors is therefore a vector space itself. Spans can be generalized to matroids and modules.
Monoid ringIn abstract algebra, a monoid ring is a ring constructed from a ring and a monoid, just as a group ring is constructed from a ring and a group. Let R be a ring and let G be a monoid. The monoid ring or monoid algebra of G over R, denoted R[G] or RG, is the set of formal sums , where for each and rg = 0 for all but finitely many g, equipped with coefficient-wise addition, and the multiplication in which the elements of R commute with the elements of G.
Quotient ringIn ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring R and a two-sided ideal I in R, a new ring, the quotient ring R / I, is constructed, whose elements are the cosets of I in R subject to special + and ⋅ operations.
Abelian groupIn mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.
Module homomorphismIn algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The of the zero element under f is called the kernel of f.
Noetherian ringIn mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left (or right) ideals has a largest element; that is, there exists an n such that: Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated.
SubgroupIn group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗. More precisely, H is a subgroup of G if the restriction of ∗ to H × H is a group operation on H. This is often denoted H ≤ G, read as "H is a subgroup of G". The trivial subgroup of any group is the subgroup {e} consisting of just the identity element. A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G).