Summary
A sarcoma is a malignant tumor, a type of cancer that arises from transformed cells of mesenchymal (connective tissue) origin. Connective tissue is a broad term that includes bone, cartilage, fat, vascular, or hematopoietic tissues, and sarcomas can arise in any of these types of tissues. As a result, there are many subtypes of sarcoma, which are classified based on the specific tissue and type of cell from which the tumor originates. Sarcomas are primary connective tissue tumors, meaning that they arise in connective tissues. This is in contrast to secondary (or "metastatic") connective tissue tumors, which occur when a cancer from elsewhere in the body (such as the lungs, breast tissue or prostate) spreads to the connective tissue. Sarcomas are one of five different types of cancer, classified by the cell type from which they originate. The word sarcoma is derived from the Greek σάρκωμα sarkōma 'fleshy excrescence or substance', itself from σάρξ sarx meaning 'flesh'. Sarcomas are typically divided into two major groups: bone sarcomas and soft-tissue sarcomas, each of which has multiple subtypes. In the United States, the American Joint Committee on Cancer (AJCC) publishes guidelines that classify the subtypes of sarcoma. These subtypes are as follows: Osteosarcoma Chondrosarcoma Poorly differentiated round/spindle cell tumors (includes Ewing sarcoma) Hemangioendothelioma Angiosarcoma Fibrosarcoma/myofibrosarcoma Chordoma Adamantinoma Other: Liposarcoma Leiomyosarcoma Malignant peripheral nerve sheath tumor Rhabdomyosarcoma Synovial sarcoma Malignant solitary fibrous tumor.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (3)
BIOENG-399: Immunoengineering
Immunoengineering is an emerging field where engineering principles are grounded in immunology. This course provides students a broad overview of how engineering approaches can be utilized to study im
BIO-471: Cancer biology I
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.
BIO-392: Oncology
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
Related publications (18)