Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Explores scaling laws, simulations, and challenges in electrostatic MEMS, focusing on energy density, capacitance, actuators, and practical applications in haptic gloves.
Explores transduction through actuation mechanisms, covering force-based and deformation-based methods, shape memory polymers, electrostatic and magnetic actuation principles, and examples like Texas Instruments DLP & DMD.
Covers the ON-OFF controller concept and the introduction of hysteresis to reduce actuator switching frequency while maintaining control within a desired range.