Summary
A polarization rotator is an optical device that rotates the polarization axis of a linearly polarized light beam by an angle of choice. Such devices can be based on the Faraday effect, on birefringence, or on total internal reflection. Rotators of linearly polarized light have found widespread applications in modern optics since laser beams tend to be linearly polarized and it is often necessary to rotate the original polarization to its orthogonal alternative. Faraday rotator A Faraday rotator consists of an optical material in a magnetic field. When light propagates in the material, interaction with the magnetic field causes left- and right-handed circularly polarized waves to propagate with slightly different phase velocities. Since a linearly-polarized wave can be described as a superposition of left- and right-handed circularly polarized waves, the difference in phase velocity causes the polarization direction of a linearly-polarized wave to rotate as it propagates through the material. The direction of the rotation depends on whether the light is propagating with or against the direction of the magnetic field: a rotation induced by passing through the material is not undone by passing through it in the opposite direction. This can be used to make an optical isolator. Half-wave plates and quarter-wave plates alter the polarization of light due to the principle of birefringence. Their performance is wavelength-specific; a fact that may be a limitation. Switchable wave plates can also be manufactured out of liquid crystals, ferro-electric liquid crystals, or magneto-optic crystals. These devices can be used to rapidly change the angle of polarization in response to an electric signal, and can be used for rapid polarization state generation (PSG) or polarization state analysis (PSA) with high accuracy. In particular, the PSG and PSA made with magneto-optic (MO) switches have been successfully used to analyze polarization mode dispersion (PMD) and polarization dependent loss (PDL) with accuracies not obtainable with rotating waveplate methods, thanks to the binary nature of the MO switches.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
EE-201: Electromagnetics II : field computation
Ce cours traite de l'électromagnétisme dans le vide et dans les milieux continus. A partir des principes fondamentaux de l'électromagnétisme, on établit les méthodes de résolution des équations de Max
PHYS-114: General physics: electromagnetism
The course first develops the basic laws of electricity and magnetism and illustrates the use in understanding various electromagnetic phenomena.