Concept

Hypoxia (environmental)

Hypoxia refers to low oxygen conditions. Normally, 20.9% of the gas in the atmosphere is oxygen. The partial pressure of oxygen in the atmosphere is 20.9% of the total barometric pressure. In water, oxygen levels are much lower, approximately 7 ppm or 0.0007% in good quality water, and fluctuate locally depending on the presence of photosynthetic organisms and relative distance to the surface (if there is more oxygen in the air, it will diffuse across the partial pressure gradient). Atmospheric hypoxia occurs naturally at high altitudes. Total atmospheric pressure decreases as altitude increases, causing a lower partial pressure of oxygen, which is defined as hypobaric hypoxia. Oxygen remains at 20.9% of the total gas mixture, differing from hypoxic hypoxia, where the percentage of oxygen in the air (or blood) is decreased. This is common in the sealed burrows of some subterranean animals, such as blesmols. Atmospheric hypoxia is also the basis of altitude training, which is a standard part of training for elite athletes. Several companies mimic hypoxia using normobaric artificial atmosphere. ocean deoxygenation Oxygen depletion is a phenomenon that occurs in aquatic environments as dissolved oxygen (DO; molecular oxygen dissolved in the water) becomes reduced in concentration to a point where it becomes detrimental to aquatic organisms living in the system. Dissolved oxygen is typically expressed as a percentage of the oxygen that would dissolve in the water at the prevailing temperature and salinity (both of which affect the solubility of oxygen in water; see oxygen saturation and underwater). An aquatic system lacking dissolved oxygen (0% saturation) is termed anaerobic, reducing, or anoxic; a system with low concentration—in the range between 1 and 30% saturation—is called hypoxic or dysoxic. Most fish cannot live below 30% saturation since they rely on oxygen to derive energy from their nutrients. Hypoxia leads to impaired reproduction of remaining fish via endocrine disruption.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
ENV-425: Limnology
Focus is on lakes, rivers and reservoirs as aquatic systems. Specific is the quantitative analyse (incl. exercises) of physical, biogeochemical and sedimentological processes. The goal is to understan
ENV-202: Microbiology for engineers
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Related lectures (12)
PN Junction: Diffusion Current
Explains diffusion current in a PN junction and the role of electric fields.
Sulfur and Nitrogen Cycles
Explores the environmental significance of sulfur and nitrogen cycles, including key microbial processes and organisms involved.
Chemistry of Natural Waters II
Explores the chemistry of Lake Cadagno, emphasizing sulfate transport, redox reactions, iron cycling, and the E-pH stability diagram.
Show more
Related publications (57)

Near-bed stratification controls bottom hypoxia in ice-covered alpine lakes

Damien Bouffard, Hugo Nicolás Ulloa Sánchez, Camille Roland Marie Minaudo, Janine Rüegg, Tomy Doda, Nicolas Thomas Georges Escoffier, Hannah Elisa Chmiel, Pascal Perolo

In ice-covered lakes, near-bottom oxygen concentration decreases for most of the wintertime, sometimes down to the point that bottom waters become hypoxic. Studies insofar have reached divergent conclusions on whether climate change limits or reinforces th ...
WILEY2023

Genomic insights into the coupling of a Chlorella-like microeukaryote and sulfur bacteria in the chemocline of permanently stratified Lake Cadagno

Christel Sybille Hassler

Meromictic Lake Cadagno is a permanently stratified system with a persistent microbial bloom within the oxic-anoxic boundary called the chemocline. The association between oxygenic and anoxygenic photosynthesis within the chemocline has been known for at l ...
SPRINGERNATURE2023

Iron Reduction in Profundal Sediments of Ultraoligotrophic Lake Tahoe under Oxygen-Limited Conditions

Meret Aeppli

Increased periods of bottom water anoxia in deep temperate lakes due to decreasing frequency and depth of water column mixing in a warming climate may result in the reductive dissolution of iron minerals and increased flux of nutrients from the sediment in ...
2023
Show more
Related concepts (17)
Oxygen saturation
Oxygen saturation (symbol SO2) is a relative measure of the concentration of oxygen that is dissolved or carried in a given medium as a proportion of the maximal concentration that can be dissolved in that medium at the given temperature. It can be measured with a dissolved oxygen probe such as an oxygen sensor or an optode in liquid media, usually water. The standard unit of oxygen saturation is percent (%). Oxygen saturation can be measured regionally and noninvasively.
Harmful algal bloom
A harmful algal bloom (HAB), or excessive algae growth, is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, mechanical damage to other organisms, or by other means. HABs are sometimes defined as only those algal blooms that produce toxins, and sometimes as any algal bloom that can result in severely lower oxygen levels in natural waters, killing organisms in marine or fresh waters. Blooms can last from a few days to many months.
Nutrient pollution
Nutrient pollution, a form of water pollution, refers to contamination by excessive inputs of nutrients. It is a primary cause of eutrophication of surface waters (lakes, rivers and coastal waters), in which excess nutrients, usually nitrogen or phosphorus, stimulate algal growth. Sources of nutrient pollution include surface runoff from farm fields and pastures, discharges from septic tanks and feedlots, and emissions from combustion. Raw sewage is a large contributor to cultural eutrophication since sewage is high in nutrients.
Show more
Related MOOCs (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.