Schizosaccharomyces pombe, also called "fission yeast", is a species of yeast used in traditional brewing and as a model organism in molecular and cell biology. It is a unicellular eukaryote, whose cells are rod-shaped. Cells typically measure 3 to 4 micrometres in diameter and 7 to 14 micrometres in length. Its genome, which is approximately 14.1 million base pairs, is estimated to contain 4,970 protein-coding genes and at least 450 non-coding RNAs.
These cells maintain their shape by growing exclusively through the cell tips and divide by medial fission to produce two daughter cells of equal size, which makes them a powerful tool in cell cycle research.
Fission yeast was isolated in 1893 by Paul Lindner from East African millet beer. The species name pombe is the Swahili word for beer. It was first developed as an experimental model in the 1950s: by Urs Leupold for studying genetics, and by Murdoch Mitchison for studying the cell cycle.
Paul Nurse, a fission yeast researcher, successfully merged the independent schools of fission yeast genetics and cell cycle research. Together with Lee Hartwell and Tim Hunt, Nurse won the 2001 Nobel Prize in Physiology or Medicine for their work on cell cycle regulation.
The sequence of the S. pombe genome was published in 2002, by a consortium led by the Sanger Institute, becoming the sixth model eukaryotic organism whose genome has been fully sequenced. S. pombe researchers are supported by the PomBase MOD (model organism database). This has fully unlocked the power of this organism, with many genes orthologous to human genes identified - 70% to date, including many genes involved in human disease. In 2006, sub-cellular localization of almost all the proteins in S. pombe was published using green fluorescent protein as a molecular tag.
Schizosaccharomyces pombe has also become an important organism in studying the cellular responses to DNA damage and the process of DNA replication.
Approximately 160 natural strains of S. pombe have been isolated.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.
The course will deliver basic knowledge on the principles of food fermentation and enzyme technology. The course will also present benefits that food biotechnology can bring in terms of Nutrition & He
DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes.
A fungus (: fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from the other eukaryotic kingdoms, which, by one traditional classification, includes Plantae, Animalia, Protozoa, and Chromista. A characteristic that places fungi in a different kingdom from plants, bacteria, and some protists is chitin in their cell walls.
Ageing (or aging in American English) is the process of becoming older. The term refers mainly to humans, many other animals, and fungi, whereas for example, bacteria, perennial plants and some simple animals are potentially biologically immortal. In a broader sense, ageing can refer to single cells within an organism which have ceased dividing, or to the population of a species. In humans, ageing represents the accumulation of changes in a human being over time and can encompass physical, psychological, and social changes.
Explores synthetic lethality in genetics, focusing on cancer implications and therapeutic insights through genetic interactions.
Explores the composition of a cell, costs of biosynthesis, biosynthetic pathways, flux balance analysis, and gene essentiality.
Explores replicative immortality in cancer cells, focusing on telomere erosion, telomerase activity, and the role of p53 in maintaining genomic stability.
Regulation of cytokinesis is essential for the cell during its division cycle. Failure to do so can lead to aneuploidy, which can be fatal and lead to senescence or cancer. A useful model organism for studying cytokinesis in eukaryotes is Schizosaccharomyc ...
Regulation of cytokinesis is essential for the cell during its division cycle. Failure to do so can lead to aneuploidy, which can be fatal and lead to senescence or cancer. A useful model organism for studying cytokinesis in eukaryotes is Schizosaccharomyc ...
EPFL Infoscience2023
How chronic mutational processes and punctuated bursts of DNA damage drive evolution of the cancer genome is poorly understood. Here, we demonstrate a strategy to disentangle and quantify distinct mechanisms underlying genome evolution in single cells, dur ...