Synthetic biological circuits are an application of synthetic biology where biological parts inside a cell are designed to perform logical functions mimicking those observed in electronic circuits. The applications range from simply inducing production to adding a measurable element, like GFP, to an existing natural biological circuit, to implementing completely new systems of many parts.
The goal of synthetic biology is to generate an array of tunable and characterized parts, or modules, with which any desirable synthetic biological circuit can be easily designed and implemented. These circuits can serve as a method to modify cellular functions, create cellular responses to environmental conditions, or influence cellular development. By implementing rational, controllable logic elements in cellular systems, researchers can use living systems as engineered "biological machines" to perform a vast range of useful functions.
The first natural gene circuit studied in detail was the lac operon. In studies of diauxic growth of E. coli on two-sugar media, Jacques Monod and Francois Jacob discovered that E.coli preferentially consumes the more easily processed glucose before switching to lactose metabolism. They discovered that the mechanism that controlled the metabolic "switching" function was a two-part control mechanism on the lac operon. When lactose is present in the cell the enzyme β-galactosidase is produced to convert lactose into glucose or galactose. When lactose is absent in the cell the lac repressor inhibits the production of the enzyme β-galactosidase to prevent any inefficient processes within the cell.
The lac operon is used in the biotechnology industry for production of recombinant proteins for therapeutic use. The gene or genes for producing an exogenous protein are placed on a plasmid under the control of the lac promoter. Initially the cells are grown in a medium that does not contain lactose or other sugars, so the new genes are not expressed. Once the cells reach a certain point in their growth, Isopropyl β-D-1-thiogalactopyranoside (IPTG) is added.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An interdisciplinary EPFL student team will design and build genetic circuits with novel functionalities. Students learn to develop a project and carry it out to completion in a concrete manner. Their
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
Chemical biology is a key discipline in biomedical research for drug discovery, synthetic biology and protein functional annotation. We will give a broad perspective of the field ranging from seminal
Covers the construction of a genetic toggle switch in Escherichia coli, a key example of synthetic biology.
Explores engineering intelligent cells through genetic and protein circuits for cell engineering, discussing sensing mechanisms and signal transmission.
Explores protein-based processors for logic operations and their applications in cell-based therapies.
Gene regulatory networks (GRNs) play a crucial role in an organism's response to changing environmental conditions. Cellular behaviors typically result from the integration of multiple gene outputs, and their regulation often demands precise control of num ...
One of the goals of synthetic biology is the development of an artificial cell. Building an artificial cell from scratch will provide a deeper understanding of fundamental mechanisms and models in biology and promises to contribute towards building novel p ...
Synthetic biology (SynBio) is a multidisciplinary field of science that focuses on living systems and organisms, and it applies engineering principles to develop new biological parts, devices, and systems or to redesign existing systems found in nature. It is a branch of science that encompasses a broad range of methodologies from various disciplines, such as biotechnology, biomaterials, material science/engineering, genetic engineering, molecular biology, molecular engineering, systems biology, membrane science, biophysics, chemical and biological engineering, electrical and computer engineering, control engineering and evolutionary biology.
Introduction: Glaucoma, the leading cause of irreversible blindness globally, affects more than 70 million people across the world. When initial treatments prove ineffective, especially for cases with high intraocular pressure (IOP), the preferred approach ...