The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in 3-dimensional linear algebra. Classic Euler angles usually take the inclination angle in such a way that zero degrees represent the vertical orientation. Alternative forms were later introduced by Peter Guthrie Tait and George H. Bryan intended for use in aeronautics and engineering in which zero degrees represent the horizontal position. chained rotations Euler angles can be defined by elemental geometry or by composition of rotations. The geometrical definition demonstrates that three composed elemental rotations (rotations about the axes of a coordinate system) are always sufficient to reach any target frame. The three elemental rotations may be extrinsic (rotations about the axes xyz of the original coordinate system, which is assumed to remain motionless), or intrinsic (rotations about the axes of the rotating coordinate system XYZ, solidary with the moving body, which changes its orientation with respect to the extrinsic frame after each elemental rotation). In the sections below, an axis designation with a prime mark superscript (e.g., z′′) denotes the new axis after an elemental rotation. Euler angles are typically denoted as α, β, γ, or ψ, θ, φ. Different authors may use different sets of rotation axes to define Euler angles, or different names for the same angles. Therefore, any discussion employing Euler angles should always be preceded by their definition. Without considering the possibility of using two different conventions for the definition of the rotation axes (intrinsic or extrinsic), there exist twelve possible sequences of rotation axes, divided in two groups: Proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y) Tait–Bryan angles (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (20)
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Show more
Related lectures (65)
Advanced Physics I: Variable Mass Systems
Covers variable mass systems, center of mass, and rotation concepts in advanced physics.
Kinematics and Dynamics of Rigid Bodies
Explores kinematics and dynamics of rigid bodies, including Euler angles and moment of inertia.
Chocs et Collisions: Newton's Laws and Restitution Coefficient
Explores Newton's laws, kinetic energy, and restitution coefficient in collisions, including conservation laws and attached objects.
Show more
Related publications (121)

Who says you are so sick? An investigation on individual susceptibility to cybersickness triggers using EEG, EGG and ECG

Ronan Boulic, Nana Tian

In this research paper, we conducted a study to investigate the connection between three objective measures: Electrocardiogram(ECG), Electrogastrogram (EGG), and Electroencephalogram (EEG), and individuals' susceptibility to cybersickness. Our primary obje ...
2024

Painting Taylor vortices with cellulose nanocrystals: Suspension flow supercritical spectral dynamics

Marianne Liebi

We study the flow stability and spatiotemporal spectral dynamics of cellulose nanocrystal (CNC) suspensions in a custom Taylor-Couette flow cell using the intrinsic shear induced birefringence and liquid crystalline properties of CNC suspensions for flow v ...
Aip Publishing2024

Leveraging Continuous Time to Understand Momentum When Training Diagonal Linear Networks

Nicolas Henri Bernard Flammarion, Hristo Georgiev Papazov, Scott William Pesme

In this work, we investigate the effect of momentum on the optimisation trajectory of gradient descent. We leverage a continuous-time approach in the analysis of momentum gradient descent with step size γ\gamma and momentum parameter β\beta that allows u ...
2024
Show more
Related concepts (26)
Gimbal lock
Gimbal lock is the loss of one degree of freedom in a three-dimensional, three-gimbal mechanism that occurs when the axes of two of the three gimbals are driven into a parallel configuration, "locking" the system into rotation in a degenerate two-dimensional space. The term gimbal-lock can be misleading in the sense that none of the individual gimbals are actually restrained. All three gimbals can still rotate freely about their respective axes of suspension.
Gimbal
A gimbal is a pivoted support that permits rotation of an object about an axis. A set of three gimbals, one mounted on the other with orthogonal pivot axes, may be used to allow an object mounted on the innermost gimbal to remain independent of the rotation of its support (e.g. vertical in the first animation). For example, on a ship, the gyroscopes, shipboard compasses, stoves, and even drink holders typically use gimbals to keep them upright with respect to the horizon despite the ship's pitching and rolling.
Rotation
Rotation or rotational motion is the circular movement of an object around a central line, known as axis of rotation. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersecting anywhere inside or outside the figure at a center of rotation. A solid figure has an infinite number of possible axes and angles of rotation, including chaotic rotation (between arbitrary orientations), in contrast to rotation around a axis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.