A gimbal is a pivoted support that permits rotation of an object about an axis. A set of three gimbals, one mounted on the other with orthogonal pivot axes, may be used to allow an object mounted on the innermost gimbal to remain independent of the rotation of its support (e.g. vertical in the first animation). For example, on a ship, the gyroscopes, shipboard compasses, stoves, and even drink holders typically use gimbals to keep them upright with respect to the horizon despite the ship's pitching and rolling.
The gimbal suspension used for mounting compasses and the like is sometimes called a Cardan suspension after Italian mathematician and physicist Gerolamo Cardano (1501–1576) who described it in detail. However, Cardano did not invent the gimbal, nor did he claim to. The device has been known since antiquity, first described in the 3rd c. BC by Philo of Byzantium, although some modern authors support the view that it may not have a single identifiable inventor.
The gimbal was first described by the Greek inventor Philo of Byzantium (280–220 BC). Philo described an eight-sided ink pot with an opening on each side, which can be turned so that while any face is on top, a pen can be dipped and inked — yet the ink never runs out through the holes of the other sides. This was done by the suspension of the inkwell at the center, which was mounted on a series of concentric metal rings so that it remained stationary no matter which way the pot is turned.
In Ancient China, the Han dynasty (202 BC – 220 AD) inventor and mechanical engineer Ding Huan created a gimbal incense burner around 180 AD. There is a hint in the writing of the earlier Sima Xiangru (179–117 BC) that the gimbal existed in China since the 2nd century BC. There is mention during the Liang dynasty (502–557) that gimbals were used for hinges of doors and windows, while an artisan once presented a portable warming stove to Empress Wu Zetian (r. 690–705) which employed gimbals.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Euler angles are three angles introduced by Leonhard Euler to describe the orientation of a rigid body with respect to a fixed coordinate system. They can also represent the orientation of a mobile frame of reference in physics or the orientation of a general basis in 3-dimensional linear algebra. Classic Euler angles usually take the inclination angle in such a way that zero degrees represent the vertical orientation. Alternative forms were later introduced by Peter Guthrie Tait and George H.
An inertial navigation system (INS) is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity (direction and speed of movement) of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and sometimes by magnetic sensors (magnetometers) and/or speed measuring devices.
Spacecraft attitude control is the process of controlling the orientation of a spacecraft (vehicle or satellite) with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc. Controlling vehicle attitude requires sensors to measure vehicle orientation, actuators to apply the torques needed to orient the vehicle to a desired attitude, and algorithms to command the actuators based on (1) sensor measurements of the current attitude and (2) specification of a desired attitude.
Covers the history, kinematics, and applications of parallel robots with closed kinematic chains and all motors at the base, including the Delta robot and its variants.
Autonomous navigation of small UAVs is typically based on the integration of inertial navigation systems (INS) together with global navigation satellite systems (GNSS). However, GNSS signals can face various forms of interference affecting their continuous ...
A new concept for velocity space thermal ion loss detection is presented. This diagnostic provides pitch angle resolved measurements that are unfeasible with current diagnostics. It uses the same detection principle as the Fast-Ion Loss Detector with a sci ...
Inertial measurement unit (IMU) sensors are widely used for motion analysis in sports and rehabilitation. The attachment of IMU sensors to predefined body segments and sides (left/right) is complex, time-consuming, and error-prone. Methods for solving the ...