Algebraic number fieldIn mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
Separable extensionIn field theory, a branch of algebra, an algebraic field extension is called a separable extension if for every , the minimal polynomial of over F is a separable polynomial (i.e., its formal derivative is not the zero polynomial, or equivalently it has no repeated roots in any extension field). There is also a more general definition that applies when E is not necessarily algebraic over F. An extension that is not separable is said to be inseparable.
Tensor product of modulesIn mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group.
Glossary of field theoryField theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject. (See field theory (physics) for the unrelated field theories in physics.) A field is a commutative ring (F,+,*) in which 0≠1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division. The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F×; The ring of polynomials in the variable x with coefficients in F is denoted by F[x].
Tensor product of algebrasIn mathematics, the tensor product of two algebras over a commutative ring R is also an R-algebra. This gives the tensor product of algebras. When the ring is a field, the most common application of such products is to describe the product of algebra representations. Let R be a commutative ring and let A and B be R-algebras. Since A and B may both be regarded as R-modules, their tensor product is also an R-module. The tensor product can be given the structure of a ring by defining the product on elements of the form a ⊗ b by and then extending by linearity to all of A ⊗R B.
Cyclotomic fieldIn number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to Q, the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's Last Theorem. It was in the process of his deep investigations of the arithmetic of these fields (for prime n) – and more precisely, because of the failure of unique factorization in their rings of integers – that Ernst Kummer first introduced the concept of an ideal number and proved his celebrated congruences.
Splitting fieldIn abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial splits, i.e., decomposes into linear factors. A splitting field of a polynomial p(X) over a field K is a field extension L of K over which p factors into linear factors where and for each we have with ai not necessarily distinct and such that the roots ai generate L over K. The extension L is then an extension of minimal degree over K in which p splits.
Algebraic extensionIn mathematics, an algebraic extension is a field extension L/K such that every element of the larger field L is algebraic over the smaller field K; that is, every element of L is a root of a non-zero polynomial with coefficients in K. A field extension that is not algebraic, is said to be transcendental, and must contain transcendental elements, that is, elements that are not algebraic. The algebraic extensions of the field of the rational numbers are called algebraic number fields and are the main objects of study of algebraic number theory.
Algebraic number theoryAlgebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.
P-adic numberIn number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to (possibly infinite) decimals, but with digits based on a prime number p rather than ten, and extending (possibly infinitely) to the left rather than to the right.