Summary
A microscope slide is a thin flat piece of glass, typically 75 by 26 mm (3 by 1 inches) and about 1 mm thick, used to hold objects for examination under a microscope. Typically the object is mounted (secured) on the slide, and then both are inserted together in the microscope for viewing. This arrangement allows several slide-mounted objects to be quickly inserted and removed from the microscope, labeled, transported, and stored in appropriate slide cases or folders etc. Microscope slides are often used together with a cover slip or cover glass, a smaller and thinner sheet of glass that is placed over the specimen. Slides are held in place on the microscope's stage by slide clips, slide clamps or a cross-table which is used to achieve precise, remote movement of the slide upon the microscope's stage (such as in an automated/computer operated system, or where touching the slide with fingers is inappropriate either due to the risk of contamination or lack of precision). Frosted microscope Slides (76mm-20mm)×26mm×0.9mm) 50 pic one box The origin of the concept was pieces of ivory or bone, containing specimens held between disks of transparent mica, that would slide into the gap between the stage and the objective. These "sliders" were popular in Victorian England until the Royal Microscopical Society introduced the standardized glass microscope slide. A standard microscope slide measures about 75 mm by 25 mm (3′′ by 1′′) and is about 1 mm thick. A range of other sizes are available for various special purposes, such as 75 x 50 mm for geological use, 46 x 27 mm for petrographic studies, and 48 x 28 mm for thin sections. Slides are usually made of common glass and their edges are often finely ground or polished. Microscope slides are usually made of optical quality glass, such as soda lime glass or borosilicate glass, but specialty plastics are also used. Fused quartz slides are often used when ultraviolet transparency is important, e.g. in fluorescence microscopy. While plain slides are the most common, there are several specialized types.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (12)
PHYS-405: Experimental methods in physics
The course's objectivs are: Learning several advenced methods in experimental physics, and critical reading of experimental papers.
MICRO-428: Metrology
The course deals with the concept of measuring in different domains, particularly in the electrical, optical, and microscale domains. The course will end with a perspective on quantum measurements, wh
PHYS-744: Advanced Topics in Quantum Sciences and Technologies
This course provides an in-depth treatment of the latest experimental and theoretical topics in quantum sciences and technologies, including for example quantum sensing, quantum optics, cold atoms, th
Show more
Related concepts (13)
Staining
Staining is a technique used to enhance contrast in samples, generally at the microscopic level. Stains and dyes are frequently used in histology (microscopic study of biological tissues), in cytology (microscopic study of cells), and in the medical fields of histopathology, hematology, and cytopathology that focus on the study and diagnoses of diseases at the microscopic level. Stains may be used to define biological tissues (highlighting, for example, muscle fibers or connective tissue), cell populations (classifying different blood cells), or organelles within individual cells.
Optical microscope
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast. The object is placed on a stage and may be directly viewed through one or two eyepieces on the microscope.
Index-matching material
In optics, an index-matching material is a substance, usually a liquid, cement (adhesive), or gel, which has an index of refraction that closely approximates that of another object (such as a lens, material, fiber-optic, etc.). When two substances with the same index are in contact, light passes from one to the other with neither reflection nor refraction. As such, they are used for various purposes in science, engineering, and art.
Show more