TransposeIn linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by AT (among other notations). The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. In the case of a logical matrix representing a binary relation R, the transpose corresponds to the converse relation RT.
Spectral theoremIn mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces.
Diagonalizable matrixIn linear algebra, a square matrix is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix and a diagonal matrix such that , or equivalently . (Such , are not unique.) For a finite-dimensional vector space , a linear map is called diagonalizable if there exists an ordered basis of consisting of eigenvectors of .
DeterminantIn mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix A is denoted det(A), det A, or .
System of linear equationsIn mathematics, a system of linear equations (or linear system) is a collection of one or more linear equations involving the same variables. For example, is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by the ordered triple since it makes all three equations valid. The word "system" indicates that the equations should be considered collectively, rather than individually.
LU decompositionIn numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix decomposition). The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix.
Change of basisIn mathematics, an ordered basis of a vector space of finite dimension n allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of n scalars called coordinates. If two different bases are considered, the coordinate vector that represents a vector v on one basis is, in general, different from the coordinate vector that represents v on the other basis. A change of basis consists of converting every assertion expressed in terms of coordinates relative to one basis into an assertion expressed in terms of coordinates relative to the other basis.
Definite quadratic formIn mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite. A semidefinite (or semi-definite) quadratic form is defined in much the same way, except that "always positive" and "always negative" are replaced by "never negative" and "never positive", respectively.
Square root of a matrixIn mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. A matrix B is said to be a square root of A if the matrix product BB is equal to A. Some authors use the name square root or the notation A1/2 only for the specific case when A is positive semidefinite, to denote the unique matrix B that is positive semidefinite and such that BB = BTB = A (for real-valued matrices, where BT is the transpose of B).
Hadamard product (matrices)In mathematics, the Hadamard product (also known as the element-wise product, entrywise product or Schur product) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements. This operation can be thought as a "naive matrix multiplication" and is different from the matrix product. It is attributed to, and named after, either French-Jewish mathematician Jacques Hadamard or German-Jewish mathematician Issai Schur.