Résumé
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Let and be three vector spaces over the same base field . A bilinear map is a function such that for all , the map is a linear map from to and for all , the map is a linear map from to In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed. Such a map satisfies the following properties. For any , The map is additive in both components: if and then and If and we have B(v, w) = B(w, v) for all then we say that B is symmetric. If X is the base field F, then the map is called a bilinear form, which are well-studied (for example: scalar product, inner product, and quadratic form). The definition works without any changes if instead of vector spaces over a field F, we use modules over a commutative ring R. It generalizes to n-ary functions, where the proper term is multilinear. For non-commutative rings R and S, a left R-module M and a right S-module N, a bilinear map is a map B : M × N → T with T an (R, S)-bimodule, and for which any n in N, m ↦ B(m, n) is an R-module homomorphism, and for any m in M, n ↦ B(m, n) is an S-module homomorphism. This satisfies B(r ⋅ m, n) = r ⋅ B(m, n) B(m, n ⋅ s) = B(m, n) ⋅ s for all m in M, n in N, r in R and s in S, as well as B being additive in each argument. An immediate consequence of the definition is that B(v, w) = 0X whenever v = 0V or w = 0W. This may be seen by writing the zero vector 0V as 0 ⋅ 0V (and similarly for 0W) and moving the scalar 0 "outside", in front of B, by linearity. The set L(V, W; X) of all bilinear maps is a linear subspace of the space (viz. vector space, module) of all maps from V × W into X. If V, W, X are finite-dimensional, then so is L(V, W; X).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (1)

Efficient multistage secret sharing scheme using bilinear map

Mitra Fatemi, Reza Ghasemi

In a multistage secret sharing (MSSS) scheme, the authorised subsets of participants could recover a number of secrets in different stages. A one-stage multisecret sharing (OSMSS) scheme is a special
Inst Engineering Technology-Iet2014
Concepts associés (36)
Application bilinéaire
En mathématiques, une application bilinéaire est un cas particulier d'application multilinéaire. Soient E, F et G trois espaces vectoriels sur un corps commutatif K et φ : E×F → G une application. On dit que φ est bilinéaire si elle est linéaire en chacune de ses variables, c'est-à-dire : Si G = K, on parle de forme bilinéaire. Le produit scalaire est une forme bilinéaire, car il est distributif sur la somme vectorielle, et associatif avec la multiplication par un scalaire : Soit A et B deux anneaux (non nécessairement commutatifs), E un A-module à gauche, F un B-module à droite et G un (A,B)-bimodule.
Matrice (mathématiques)
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Espace vectoriel
vignette|Dans un espace vectoriel, on peut additionner deux vecteurs. Par exemple, la somme du vecteur v (en bleu) et w (en rouge) est v + w. On peut aussi multiplier un vecteur, comme le vecteur w que l'on peut multiplier par 2, on obtient alors 2w et la somme devient v + 2w. En mathématiques, plus précisément en algèbre linéaire, un espace vectoriel est un ensemble d'objets, appelés vecteurs, que l'on peut additionner entre eux, et que l'on peut multiplier par un scalaire (pour les étirer ou les rétrécir, les tourner, etc.
Afficher plus
Cours associés (13)
MATH-115(b): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux du sujet.
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-115(a): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
Afficher plus
Séances de cours associées (76)
Formes bilinéaires: Théorie et applications
Couvre la théorie et les applications des formes bilinéaires dans divers contextes mathématiques.
Méthode des éléments finis : Analyse 2D
Explore la méthode des éléments finis pour l'analyse 2D, couvrant l'assemblage, les matrices, les sources et les critères de convergence des éléments quadrangulaires.
Méthode des éléments finis: Exemple d'application 2D
Explore l'application de la méthode des éléments finis dans la distribution de température 2D sur une plaque carrée.
Afficher plus