Summary
In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative phenotypes, in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population (one with random mating). Put simply, polymorphism is when there are two or more possibilities of a trait on a gene. For example, there is more than one possible trait in terms of a jaguar's skin colouring; they can be light morph or dark morph. Due to having more than one possible variation for this gene, it is termed 'polymorphism'. However, if the jaguar has only one possible trait for that gene, it would be termed "monomorphic". For example, if there was only one possible skin colour that a jaguar could have, it would be termed monomorphic. The term polyphenism can be used to clarify that the different forms arise from the same genotype. Genetic polymorphism is a term used somewhat differently by geneticists and molecular biologists to describe certain mutations in the genotype, such as single nucleotide polymorphisms that may not always correspond to a phenotype, but always corresponds to a branch in the genetic tree. See below. Polymorphism is common in nature; it is related to biodiversity, genetic variation, and adaptation. Polymorphism usually functions to retain a variety of forms in a population living in a varied environment. The most common example is sexual dimorphism, which occurs in many organisms. Other examples are mimetic forms of butterflies (see mimicry), and human hemoglobin and blood types. According to the theory of evolution, polymorphism results from evolutionary processes, as does any aspect of a species. It is heritable and is modified by natural selection. In polyphenism, an individual's genetic makeup allows for different morphs, and the switch mechanism that determines which morph is shown is environmental. In genetic polymorphism, the genetic makeup determines the morph.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
BIO-373: Genetics and genomics
The theoretical part of this course covers classical genetics and contemporary genomics. Because bioinformatics has become important for genomic research, the course also includes practical applicatio
CS-214: Software construction
Learn how to design and implement reliable, maintainable, and efficient software using a mix of programming skills (declarative style, higher-order functions, inductive types, parallelism) and fundam
CS-107: Introduction to programming
Ce cours aborde les concepts fondamentaux de la programmation et de la programmation orientée objet (langage JAVA). Il permet également de se familisarier avec un environnement de développement inform
Related publications (103)