In computer animation and robotics, inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain, such as a robot manipulator or animation character's skeleton, in a given position and orientation relative to the start of the chain. Given joint parameters, the position and orientation of the chain's end, e.g. the hand of the character or robot, can typically be calculated directly using multiple applications of trigonometric formulas, a process known as forward kinematics. However, the reverse operation is, in general, much more challenging. Inverse kinematics is also used to recover the movements of an object in the world from some other data, such as a film of those movements, or a film of the world as seen by a camera which is itself making those movements. This occurs, for example, where a human actor's filmed movements are to be duplicated by an animated character. In robotics, inverse kinematics makes use of the kinematics equations to determine the joint parameters that provide a desired configuration (position and rotation) for each of the robot's end-effectors. This is important because robot tasks are performed with the end effectors, while control effort applies to the joints. Determining the movement of a robot so that its end-effectors move from an initial configuration to a desired configuration is known as motion planning. Inverse kinematics transforms the motion plan into joint actuator trajectories for the robot. Similar formulas determine the positions of the skeleton of an animated character that is to move in a particular way in a film, or of a vehicle such as a car or boat containing the camera which is shooting a scene of a film. Once a vehicle's motions are known, they can be used to determine the constantly-changing viewpoint for computer-generated imagery of objects in the landscape such as buildings, so that these objects change in perspective while themselves not appearing to move as the vehicle-borne camera goes past them.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (29)
MICRO-450: Basics of robotics for manipulation
This course introduces the basics of robotics for manipulation. The aspects concerning robot architectures (Serial , Parallel and Cartesian), sensors, kinematics and dynamic modelling and control are
ME-104: Introduction to structural mechanics
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
BIO-687: Engineering of musculoskeletal system and rehabilitation
This course presents today research questions and methods associated to the musculoskeletal system, its pathologies, and treatment.
Show more
Related lectures (240)
Geometric Curve Reparameterization
Covers the reparameterization of geometric curves and the concept of 'same geometric curve'.
Gyroscope Applications in Medical Instrumentation
Explores gyroscopes in medical instrumentation, focusing on gait analysis and tremor detection.
Flexible Guides: General Overview
Covers the concept of flexible guides, exploring their properties, design principles, material selection, and manufacturing technologies.
Show more
Related publications (287)

Pivot, process for manufacturing such a pivot, oscillator comprising such a pivot, watch movement and timepiece comprising such an oscillator

Simon Nessim Henein, Loïc Benoît Tissot-Daguette

The present invention concerns a pivot comprising two assemblies, namely a central assembly (401) and a peripheral assembly (400). These two assemblies are mobile in rotation relative to each other around an axis of rotation (A). The pivot is characterized ...
2024

Near-Zero Parasitic Shift Flexure Pivots Based on Coupled n-RRR Planar Parallel Mechanisms

Simon Nessim Henein, Florent Cosandier, Loïc Benoît Tissot-Daguette, Etienne Frédéric Gabriel Thalmann

Flexure pivots, which are widely used for precision mechanisms, generally have the drawback of presenting parasitic shifts accompanying their rotation. The known solutions for canceling these undesirable parasitic translations usually induce a loss in radi ...
2024

An Optimal Control Formulation of Tool Affordance Applied to Impact Tasks

Sylvain Calinon, Jie Zhao

Humans use tools to complete impact-aware tasks, such as hammering a nail or playing tennis. The postures adopted to use these tools can significantly influence the performance of these tasks, where the force or velocity of the hand holding a tool plays a ...
Ieee-Inst Electrical Electronics Engineers Inc2024
Show more
Related concepts (13)
Robotics
Robotics is an interdisciplinary branch of electronics and communication, computer science and engineering. Robotics involves the design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics engineering, electronics, biomedical engineering, computer engineering, control systems engineering, software engineering, mathematics, etc.
Forward kinematics
In robot kinematics, forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters. The kinematics equations of the robot are used in robotics, computer games, and animation. The reverse process, that computes the joint parameters that achieve a specified position of the end-effector, is known as inverse kinematics.
Kinematic chain
In mechanical engineering, a kinematic chain is an assembly of rigid bodies connected by joints to provide constrained motion that is the mathematical model for a mechanical system. As the word chain suggests, the rigid bodies, or links, are constrained by their connections to other links. An example is the simple open chain formed by links connected in series, like the usual chain, which is the kinematic model for a typical robot manipulator. Mathematical models of the connections, or joints, between two links are termed kinematic pairs.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.