Electron-beam physical vapor deposition, or EBPVD, is a form of physical vapor deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum. The electron beam causes atoms from the target to transform into the gaseous phase. These atoms then precipitate into solid form, coating everything in the vacuum chamber (within line of sight) with a thin layer of the anode material.
Thin-film deposition is a process applied in the semiconductor industry to grow electronic materials, in the aerospace industry to form thermal and chemical barrier coatings to protect surfaces against corrosive environments, in optics to impart the desired reflective and transmissive properties to a substrate and elsewhere in industry to modify surfaces to have a variety of desired properties. The deposition process can be broadly classified into physical vapor deposition (PVD) and chemical vapor deposition (CVD). In CVD, the film growth takes place at high temperatures, leading to the formation of corrosive gaseous products, and it may leave impurities in the film. The PVD process can be carried out at lower deposition temperatures and without corrosive products, but deposition rates are typically lower. Electron-beam physical vapor deposition, however, yields a high deposition rate from 0.1 to 100 μm/min at relatively low substrate temperatures, with very high material utilization efficiency. The schematic of an EBPVD system is shown in Fig 1.
In an EBPVD system, the deposition chamber must be evacuated to a pressure of at least 7.5 Torr (10−2 Pa) to allow passage of electrons from the electron gun to the evaporation material, which can be in the form of an ingot or rod. Alternatively, some modern EBPVD systems utilize an arc-suppression system and can be operated at vacuum levels as low as 5.0 Torr, for situations such as parallel use with magnetron sputtering. Multiple types of evaporation materials and electron guns can be used simultaneously in a single EBPVD system, each having a power from tens to hundreds of kilowatts.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Intro into the relation between physical and structural properties; introduction into different X-Ray techniques; examples of successful technological transfer using X-Ray techniques;
Structural prope
Nanofabrication with focused charged particle beams (SEM, FIB) and their applications such as lithography, gas assisted deposition / etching, and milling are discussed and the limitations of these pro
Introduction to the physical concepts involved in the description of optical and electronic transport properties of thin-film semiconductor materials found in many large-area applications (solar cells
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films. In typical CVD, the wafer (substrate) is exposed to one or more volatile precursors, which react and/or decompose on the substrate surface to produce the desired deposit. Frequently, volatile by-products are also produced, which are removed by gas flow through the reaction chamber.
A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many applications. A familiar example is the household mirror, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of silvering was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as sputtering.
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Explores Physical Vapor Deposition techniques, including shadowing effects and equipment specifications for evaporation processes in micro and nanofabrication.
Examines ion-target interactions in PVD sputtering processes, covering compound deposition, surface damage, and factors influencing target ejection rates.
Explains the thermal evaporation process in a vacuum chamber for micro-nano fabrication.
Atomic layer deposition (ALD) is one of the premier methods to synthesize ultra-thin materials on complex surfaces. The technique allows for precise control of the thickness down to single atomic layers, while at the same time providing uniform coverage ev ...
Hoboken2024
,
Using scanning tunneling microscopy (STM), we experimentally and theoretically investigate isolated platinum phthalocyanine (PtPc) molecules adsorbed on an atomically thin NaCl(100) film vapor deposited on Au(111). We obtain good agreement between theory a ...
Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indo ...