Summary
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they are all finite. The nth Betti number represents the rank of the nth homology group, denoted Hn, which tells us the maximum number of cuts that can be made before separating a surface into two pieces or 0-cycles, 1-cycles, etc. For example, if then , if then , if then , if then , etc. Note that only the ranks of infinite groups are considered, so for example if , where is the finite cyclic group of order 2, then . These finite components of the homology groups are their torsion subgroups, and they are denoted by torsion coefficients. The term "Betti numbers" was coined by Henri Poincaré after Enrico Betti. The modern formulation is due to Emmy Noether. Betti numbers are used today in fields such as simplicial homology, computer science and . Informally, the kth Betti number refers to the number of k-dimensional holes on a topological surface. A "k-dimensional hole" is a k-dimensional cycle that is not a boundary of a (k+1)-dimensional object. The first few Betti numbers have the following definitions for 0-dimensional, 1-dimensional, and 2-dimensional simplicial complexes: b0 is the number of connected components; b1 is the number of one-dimensional or "circular" holes; b2 is the number of two-dimensional "voids" or "cavities". Thus, for example, a torus has one connected surface component so b0 = 1, two "circular" holes (one equatorial and one meridional) so b1 = 2, and a single cavity enclosed within the surface so b2 = 1. Another interpretation of bk is the maximum number of k-dimensional curves that can be removed while the object remains connected. For example, the torus remains connected after removing two 1-dimensional curves (equatorial and meridional) so b1 = 2.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood