Summary
In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity. For example, the function has a singularity at , where the value of the function is not defined, as involving a division by zero. The absolute value function also has a singularity at , since it is not differentiable there. The algebraic curve defined by in the coordinate system has a singularity (called a cusp) at . For singularities in algebraic geometry, see singular point of an algebraic variety. For singularities in differential geometry, see singularity theory. In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discontinuities: type I, which has two subtypes, and type II, which can also be divided into two subtypes (though usually is not). To describe the way these two types of limits are being used, suppose that is a function of a real argument , and for any value of its argument, say , then the left-handed limit, , and the right-handed limit, , are defined by: constrained by and constrained by . The value is the value that the function tends towards as the value approaches from below, and the value is the value that the function tends towards as the value approaches from above, regardless of the actual value the function has at the point where . There are some functions for which these limits do not exist at all. For example, the function does not tend towards anything as approaches . The limits in this case are not infinite, but rather undefined: there is no value that settles in on. Borrowing from complex analysis, this is sometimes called an essential singularity. The possible cases at a given value for the argument are as follows. A point of continuity is a value of for which , as one expects for a smooth function. All the values must be finite.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (77)
Homology of Riemann Surfaces
Explores the homology of Riemann surfaces, including singular homology and the standard n-simplex.
Trigonometric Integrals: Residues Method
Covers the calculation of integrals using the residues method and discusses singularities, poles, and examples.
Show more
Related concepts (21)
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
Scheme (mathematics)
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne).
Algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0.
Show more