Summary
In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity. For example, the function has a singularity at , where the value of the function is not defined, as involving a division by zero. The absolute value function also has a singularity at , since it is not differentiable there. The algebraic curve defined by in the coordinate system has a singularity (called a cusp) at . For singularities in algebraic geometry, see singular point of an algebraic variety. For singularities in differential geometry, see singularity theory. In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discontinuities: type I, which has two subtypes, and type II, which can also be divided into two subtypes (though usually is not). To describe the way these two types of limits are being used, suppose that is a function of a real argument , and for any value of its argument, say , then the left-handed limit, , and the right-handed limit, , are defined by: constrained by and constrained by . The value is the value that the function tends towards as the value approaches from below, and the value is the value that the function tends towards as the value approaches from above, regardless of the actual value the function has at the point where . There are some functions for which these limits do not exist at all. For example, the function does not tend towards anything as approaches . The limits in this case are not infinite, but rather undefined: there is no value that settles in on. Borrowing from complex analysis, this is sometimes called an essential singularity. The possible cases at a given value for the argument are as follows. A point of continuity is a value of for which , as one expects for a smooth function. All the values must be finite.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (25)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-207(d): Analysis IV
Le cours étudie les concepts fondamentaux de l'analyse complexe et de l'analyse de Laplace en vue de leur utilisation pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
ME-716: Similarity and Transport Phenomena in Fluid
The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and c
Show more
Related lectures (77)
Homology of Riemann Surfaces
Explores the homology of Riemann surfaces, including singular homology and the standard n-simplex.
Trigonometric Integrals: Residues Method
Covers the calculation of integrals using the residues method and discusses singularities, poles, and examples.
Show more
Related publications (56)

CONTROL OF HYPERBOLIC AND PARABOLIC EQUATIONS ON NETWORKS AND SINGULAR LIMITS

Nicola De Nitti

vanishing viscosity, networks. This work has received funding from the Alexander von Humboldt-Professorship program, the Transregio 154 Project "Mathematical Modelling, Simulation and Optimization Using the Example of Gas Networks" of the DFG, the grant PI ...
Amer Inst Mathematical Sciences-Aims2024

Experimental observation of topological transition in linear and nonlinear parametric oscillators

Romain Christophe Rémy Fleury, Benjamin Apffel

Parametric oscillators are examples of externally driven systems that can exhibit two stable states with opposite phase depending on the initial conditions. In this work, we propose to study what happens when the external forcing is perturbed by a continuo ...
2024

Asymmetric phase modulation of light with parity-symmetry broken metasurfaces

Karim Achouri, Jean-Yves Duboz

The design of wavefront-shaping devices is conventionally approached using real-frequency modeling. However, since these devices interact with light through radiative channels, they are by default non-Hermitian objects having complex eigenvalues (poles and ...
Washington2023
Show more
Related concepts (21)
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
Scheme (mathematics)
In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne).
Algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0.
Show more
Related MOOCs (9)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more