Summary
A nociceptor ("pain receptor" from Latin nocere 'to harm or hurt') is a sensory neuron that responds to damaging or potentially damaging stimuli by sending "possible threat" signals to the spinal cord and the brain. The brain creates the sensation of pain to direct attention to the body part, so the threat can be mitigated; this process is called nociception. Nociceptors were discovered by Charles Scott Sherrington in 1906. In earlier centuries, scientists believed that animals were like mechanical devices that transformed the energy of sensory stimuli into motor responses. Sherrington used many different experiments to demonstrate that different types of stimulation to an afferent nerve fiber's receptive field led to different responses. Some intense stimuli trigger reflex withdrawal, certain autonomic responses, and pain. The specific receptors for these intense stimuli were called nociceptors. In mammals, nociceptors are found in any area of the body that can sense noxious stimuli. External nociceptors are found in tissue such as the skin (cutaneous nociceptors), the corneas, and the mucosa. Internal nociceptors are found in a variety of organs, such as the muscles, the joints, the bladder, the visceral organs, and the digestive tract. The cell bodies of these neurons are located in either the dorsal root ganglia or the trigeminal ganglia. The trigeminal ganglia are specialized nerves for the face, whereas the dorsal root ganglia are associated with the rest of the body. The axons extend into the peripheral nervous system and terminate in branches to form receptive fields. Nociceptors develop from neural-crest stem cells. The neural crest is responsible for a large part of early development in vertebrates. It is specifically responsible for development of the peripheral nervous system (PNS). The neural-crest stem cells split from the neural tube as it closes, and nociceptors grow from the dorsal part of this neural-crest tissue. They form late during neurogenesis.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood