Glycomics is the comprehensive study of glycomes (the entire complement of sugars, whether free or present in more complex molecules of an organism), including genetic, physiologic, pathologic, and other aspects. Glycomics "is the systematic study of all glycan structures of a given cell type or organism" and is a subset of glycobiology. The term glycomics is derived from the chemical prefix for sweetness or a sugar, "glyco-", and was formed to follow the omics naming convention established by genomics (which deals with genes) and proteomics (which deals with proteins).
The complexity of sugars: regarding their structures, they are not linear instead they are highly branched. Moreover, glycans can be modified (modified sugars), this increases its complexity.
Complex biosynthetic pathways for glycans.
Usually glycans are found either bound to protein (glycoprotein) or conjugated with lipids (glycolipids).
Unlike genomes, glycans are highly dynamic.
This area of research has to deal with an inherent level of complexity not seen in other areas of applied biology. 68 building blocks (molecules for DNA, RNA and proteins; categories for lipids; types of sugar linkages for saccharides) provide the structural basis for the molecular choreography that constitutes the entire life of a cell. DNA and RNA have four building blocks each (the nucleosides or nucleotides). Lipids are divided into eight categories based on ketoacyl and isoprene. Proteins have 20 (the amino acids). Saccharides have 32 types of sugar linkages. While these building blocks can be attached only linearly for proteins and genes, they can be arranged in a branched array for saccharides, further increasing the degree of complexity.
Add to this the complexity of the numerous proteins involved, not only as carriers of carbohydrate, the glycoproteins, but proteins specifically involved in binding and reacting with carbohydrate:
Carbohydrate-specific enzymes for synthesis, modulation, and degradation
Lectins, carbohydrate-binding proteins of all sorts
Receptors, circulating or membrane-bound carbohydrate-binding receptors
To answer this question one should know the different and important functions of glycans.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
In molecular biology, an interactome is the whole set of molecular interactions in a particular cell. The term specifically refers to physical interactions among molecules (such as those among proteins, also known as protein–protein interactions, PPIs; or between small molecules and proteins) but can also describe sets of indirect interactions among genes (genetic interactions). The word "interactome" was originally coined in 1999 by a group of French scientists headed by Bernard Jacq.
The glycome is the entire complement of sugars, whether free or present in more complex molecules, of an organism. An alternative definition is the entirety of carbohydrates in a cell. The glycome may in fact be one of the most complex entities in nature. "Glycomics, analogous to genomics and proteomics, is the systematic study of all glycan structures of a given cell type or organism" and is a subset of glycobiology.
The branches of science known informally as omics are various disciplines in biology whose names end in the suffix -omics, such as genomics, proteomics, metabolomics, metagenomics, phenomics and transcriptomics. Omics aims at the collective characterization and quantification of pools of biological molecules that translate into the structure, function, and dynamics of an organism or organisms. The related suffix -ome is used to address the objects of study of such fields, such as the genome, proteome or metabolome respectively.
The structural complexity of glycans makes their characterization challenging, not only because of the presence of various isomeric forms of the precursor molecule but also because the fragments can themselves be isomeric. We have recently developed an IMS ...
AMER CHEMICAL SOC2023
Covers the essentials of life, energetic principles, and molecular interactions in biomolecules, focusing on noncovalent forces.
Explores protein mass spectrometry techniques, including labeling methods, quantitation, and biomarker discovery.
Explores immunoengineering for precise antibody responses and modulation of immunodominance, focusing on vaccine development challenges and innovative strategies.
The high isomericcomplexity of glycans makes them particularlydifficult to analyze. While ultra-high-resolution ion mobility spectrometry(IMS) can offer rapid baseline separation of many glycan isomers,their unambiguous identification remains a challenging ...
Glycans play an essential role in numerous physiological and pathological processes of living organisms. Despite their significant biological relevance, glycobiology remains one of the least explored fields of biochemistry. The intrinsic isomeric complexit ...