Differential algebraIn mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.
AlgebraAlgebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.
Filtered algebraIn mathematics, a filtered algebra is a generalization of the notion of a graded algebra. Examples appear in many branches of mathematics, especially in homological algebra and representation theory. A filtered algebra over the field is an algebra over that has an increasing sequence of subspaces of such that and that is compatible with the multiplication in the following sense: In general there is the following construction that produces a graded algebra out of a filtered algebra.
SedenionIn abstract algebra, the sedenions form a 16-dimensional noncommutative and nonassociative algebra over the real numbers, usually represented by the capital letter S, boldface S or blackboard bold . They are obtained by applying the Cayley–Dickson construction to the octonions, and as such the octonions are isomorphic to a subalgebra of the sedenions. Unlike the octonions, the sedenions are not an alternative algebra. Applying the Cayley–Dickson construction to the sedenions yields a 32-dimensional algebra, sometimes called the 32-ions or trigintaduonions.
Malcev algebraIn mathematics, a Malcev algebra (or Maltsev algebra or Moufang–Lie algebra) over a field is a nonassociative algebra that is antisymmetric, so that and satisfies the Malcev identity They were first defined by Anatoly Maltsev (1955). Malcev algebras play a role in the theory of Moufang loops that generalizes the role of Lie algebras in the theory of groups. Namely, just as the tangent space of the identity element of a Lie group forms a Lie algebra, the tangent space of the identity of a smooth Moufang loop forms a Malcev algebra.
Jordan algebraIn abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms: (commutative law) (). The product of two elements x and y in a Jordan algebra is also denoted x ∘ y, particularly to avoid confusion with the product of a related associative algebra. The axioms imply that a Jordan algebra is power-associative, meaning that is independent of how we parenthesize this expression. They also imply that for all positive integers m and n.
AssociatorIn abstract algebra, the term associator is used in different ways as a measure of the non-associativity of an algebraic structure. Associators are commonly studied as triple systems. For a non-associative ring or algebra , the associator is the multilinear map given by Just as the commutator measures the degree of non-commutativity, the associator measures the degree of non-associativity of . For an associative ring or algebra the associator is identically zero.
Hurwitz's theorem (composition algebras)In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a positive-definite quadratic form. The theorem states that if the quadratic form defines a homomorphism into the positive real numbers on the non-zero part of the algebra, then the algebra must be isomorphic to the real numbers, the complex numbers, the quaternions, or the octonions.
Flexible algebraIn mathematics, particularly abstract algebra, a binary operation • on a set is flexible if it satisfies the flexible identity: for any two elements a and b of the set. A magma (that is, a set equipped with a binary operation) is flexible if the binary operation with which it is equipped is flexible. Similarly, a nonassociative algebra is flexible if its multiplication operator is flexible. Every commutative or associative operation is flexible, so flexibility becomes important for binary operations that are neither commutative nor associative, e.
Division algebraIn the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division, except by zero, is always possible. Formally, we start with a non-zero algebra D over a field. We call D a division algebra if for any element a in D and any non-zero element b in D there exists precisely one element x in D with a = bx and precisely one element y in D such that a = yb.