Summary
In mathematics, a monomial order (sometimes called a term order or an admissible order) is a total order on the set of all (monic) monomials in a given polynomial ring, satisfying the property of respecting multiplication, i.e., If and is any other monomial, then . Monomial orderings are most commonly used with Gröbner bases and multivariate division. In particular, the property of being a Gröbner basis is always relative to a specific monomial order. Besides respecting multiplication, monomial orders are often required to be well-orders, since this ensures the multivariate division procedure will terminate. There are however practical applications also for multiplication-respecting order relations on the set of monomials that are not well-orders. In the case of finitely many variables, well-ordering of a monomial order is equivalent to the conjunction of the following two conditions: The order is a total order. If u is any monomial then . Since these conditions may be easier to verify for a monomial order defined through an explicit rule, than to directly prove it is a well-ordering, they are sometimes preferred in definitions of monomial order. The choice of a total order on the monomials allows sorting the terms of a polynomial. The leading term of a polynomial is thus the term of the largest monomial (for the chosen monomial ordering). Concretely, let R be any ring of polynomials. Then the set M of the (monic) monomials in R is a basis of R, considered as a vector space over the field of the coefficients. Thus, any nonzero polynomial p in R has a unique expression as a linear combination of monomials, where S is a finite subset of M and the cu are all nonzero. When a monomial order has been chosen, the leading monomial is the largest u in S, the leading coefficient is the corresponding cu, and the leading term is the corresponding cuu. Head monomial/coefficient/term is sometimes used as a synonym of "leading". Some authors use "monomial" instead of "term" and "power product" instead of "monomial".
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.