Electrostatic discharge (ESD) is a sudden and momentary flow of electric current between two electrically charged objects caused by contact, an electrical short or dielectric breakdown. A buildup of static electricity can be caused by tribocharging or by electrostatic induction. The ESD occurs when differently-charged objects are brought close together or when the dielectric between them breaks down, often creating a visible spark. ESD can create spectacular electric sparks (lightning, with the accompanying sound of thunder, is a large-scale ESD event), but also less dramatic forms which may be neither seen nor heard, yet still be large enough to cause damage to sensitive electronic devices. Electric sparks require a field strength above approximately 40 kV/cm in air, as notably occurs in lightning strikes. Other forms of ESD include corona discharge from sharp electrodes and brush discharge from blunt electrodes. ESD can cause harmful effects of importance in industry, including explosions in gas, fuel vapor and coal dust, as well as failure of solid state electronics components such as integrated circuits. These can suffer permanent damage when subjected to high voltages. Electronics manufacturers therefore establish electrostatic protective areas free of static, using measures to prevent charging, such as avoiding highly charging materials and measures to remove static such as grounding human workers, providing antistatic devices, and controlling humidity. ESD simulators may be used to test electronic devices, for example with a human body model or a charged device model. One of the causes of ESD events is static electricity. Static electricity is often generated through tribocharging, the separation of electric charges that occurs when two materials are brought into contact and then separated. Examples of tribocharging include walking on a rug, rubbing a plastic comb against dry hair, rubbing a balloon against a sweater, ascending from a fabric car seat, or removing some types of plastic packaging.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (30)
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
MICRO-606: Scaling in MEMS
This doctoral class covers the scaling of MEMS devices, including mechanical, thermal, electrostatic, electromagnetic, and microfluidic aspects.
ENV-424: Water resources engineering
Water resources engineering designs systems to control the quantity, quality, timing, and distribution of water to support human demands and the needs of the environment.
Show more
Related lectures (129)
Hydrology Fundamentals
Introduces hydrology fundamentals, covering soil moisture, rainfall modeling, and reservoir systems.
Applications of Gauss's law: Electric Field Calculations Simplified
Simplifies electric field calculations using Gauss's law and symmetry arguments.
Thresholds and Weirs in Rivers
Explores the design and operation principles of thresholds and weirs in rivers, emphasizing their relevance and impact on river protection and management.
Show more
Related publications (355)

Inversing the actuation cycle of dielectric elastomer actuators for a facial prosthesis

Yves Perriard, Yoan René Cyrille Civet, Paolo Germano, Alexis Boegli, Thomas Guillaume Martinez, Stefania Maria Aliki Konstantinidi, Quentin Philippe Mario De Menech

Dielectric Elastomer Actuators (DEAs) are a type of smart material described as compliant capacitors. They show impressive performances as soft actuators, such as a high strain and fast response. Nonetheless, replicating natural muscle function with DEAs h ...
Society of Photo-Optical Instrumentation Engineers (SPIE)2024

High-frequency response of a hemispherical grounding electrode

Marcos Rubinstein, Antonio Sunjerga

The lightning discharge current is characterized by a high-frequency spectrum extending from DC to about 10 MHz. The calculation of the grounding impedance is one of the most important aspects of designing lightning protection systems. The search for analy ...
2024

DEMO toroidal field coil fast discharge unit integration studies

Roberto Guarino, Alberto Ferro

The Fast Discharge Units (FDUs) of the Superconducting (SC) Toroidal Field (TF) coils in the European demonstration fusion power plant DEMO warrant the machine integrity over its full lifetime against severe failure events, such as SC coil quenches or any ...
Elsevier Science Sa2024
Show more
Related concepts (26)
Electrical breakdown
In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material (a dielectric), subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied.
Tesla coil
A Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high-frequency alternating-current electricity. Tesla experimented with a number of different configurations consisting of two, or sometimes three, coupled resonant electric circuits. Tesla used these circuits to conduct innovative experiments in electrical lighting, phosphorescence, X-ray generation, high-frequency alternating current phenomena, electrotherapy, and the transmission of electrical energy without wires.
Triboelectric effect
The triboelectric effect (also known as triboelectricity, triboelectric charging, triboelectrification, or tribocharging) describes electric charge transfer between two objects when they contact or slide against each other. It can occur with different materials, such as the sole of a shoe on a carpet, or between two pieces of the same material. It occurs with differing amounts of charge transfer (tribocharge) for all solid materials and all contacts and sliding.
Show more
Related MOOCs (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.