Summary
Ghrelin (ˈɡrɛlɪn; or lenomorelin, INN) is a hormone produced by enteroendocrine cells of the gastrointestinal tract, especially the stomach, and is often called a "hunger hormone" because it increases the drive to eat. Blood levels of ghrelin are highest before meals when hungry, returning to lower levels after mealtimes. Ghrelin may help prepare for food intake by increasing gastric motility and stimulating the secretion of gastric acid. Ghrelin activates cells in the anterior pituitary gland and hypothalamic arcuate nucleus, including neuropeptide Y neurons that initiate appetite. Ghrelin stimulates brain structures having a specific receptor – the growth hormone secretagogue receptor 1A (GHSR-1A). Ghrelin also participates in regulation of reward cognition, learning and memory, the sleep-wake cycle, taste sensation, reward behavior, and glucose metabolism. Ghrelin was discovered after the ghrelin receptor (called growth hormone secretagogue type 1A receptor or GHS-R) was determined in 1999. The hormone name is based on its role as a growth hormone-releasing peptide, with reference to the Proto-Indo-European root ghre-, meaning "to grow". The GHRL gene produces mRNA which has four exons. Five products arise: the first is the 117-amino acid preproghrelin. It is homologous to promotilin; both are members of the motilin family. It is cleaved to produce proghrelin which is cleaved to produce an unacylated 28-amino acid ghrelin and an acylated C-ghrelin. Obestatin is presumed to be cleaved from C-ghrelin. Ghrelin only becomes active when caprylic (octanoic) acid is linked posttranslationally to serine at the 3-position by the enzyme ghrelin O-acyltransferase (GOAT) to form a proteolipid. It is located on the cell membrane of ghrelin cells in the stomach and pancreas. The non-octanoylated form is desacyl ghrelin. It does not activate the GHS-R receptor but does have other effects: cardiac, anti-ghrelin, appetite stimulation, and inhibition of hepatic glucose output. Side-chains other than octanoyl have also been observed: these can also trigger the ghrelin receptor.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (32)
Related concepts (16)
Leptin
Leptin (from Greek λεπτός leptos, "thin" or "light" or "small") is a protein hormone predominantly made by adipose cells and its primary role is likely to regulate long-term energy balance. As one of the major signals of energy status, leptin levels influence appetite, satiety, and motivated behaviors oriented towards the maintenance of energy reserves (e.g., feeding, foraging behaviors). The amount of circulating leptin correlates with the amount of energy reserves, mainly triglycerides stored in adipose tissue.
Agouti-related peptide
Agouti-related protein (AgRP), also called agouti-related peptide, is a neuropeptide produced in the brain by the AgRP/NPY neuron. It is synthesized in neuropeptide Y (NPY)-containing cell bodies located in the ventromedial part of the arcuate nucleus in the hypothalamus. AgRP is co-expressed with NPY and acts to increase appetite and decrease metabolism and energy expenditure. It is one of the most potent and long-lasting of appetite stimulators. In humans, the agouti-related peptide is encoded by the AGRP gene.
Anorexia nervosa
Anorexia nervosa (AN), often referred to simply as anorexia, is an eating disorder characterized by low weight, food restriction, , fear of gaining weight, and an overpowering desire to be thin. Individuals with anorexia nervosa have a fear of being overweight or being seen as such, although they are in fact underweight. The DSM-5 describes this perceptual symptom as "disturbance in the way in which one's body weight or shape is experienced". In research and clinical settings, this symptom is called "body image disturbance".
Show more