Summary
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui- meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector. A motivating special case is a sesquilinear form on a complex vector space, V. This is a map V × V → C that is linear in one argument and "twists" the linearity of the other argument by complex conjugation (referred to as being antilinear in the other argument). This case arises naturally in mathematical physics applications. Another important case allows the scalars to come from any field and the twist is provided by a field automorphism. An application in projective geometry requires that the scalars come from a division ring (skew field), K, and this means that the "vectors" should be replaced by elements of a K-module. In a very general setting, sesquilinear forms can be defined over R-modules for arbitrary rings R. Sesquilinear forms abstract and generalize the basic notion of a Hermitian form on complex vector space. Hermitian forms are commonly seen in physics, as the inner product on a complex Hilbert space. In such cases, the standard Hermitian form on Cn is given by where denotes the complex conjugate of This product may be generalized to situations where one is not working with an orthonormal basis for Cn, or even any basis at all. By inserting an extra factor of into the product, one obtains the skew-Hermitian form, defined more precisely, below. There is no particular reason to restrict the definition to the complex numbers; it can be defined for arbitrary rings carrying an antiautomorphism, informally understood to be a generalized concept of "complex conjugation" for the ring.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (12)
MATH-115(b): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux du sujet.
MATH-115(a): Advanced linear algebra II
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
MATH-213: Differential geometry
Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.
Show more