Brain-reading or thought identification uses the responses of multiple voxels in the brain evoked by stimulus then detected by fMRI in order to decode the original stimulus. Advances in research have made this possible by using human neuroimaging to decode a person's conscious experience based on non-invasive measurements of an individual's brain activity. Brain reading studies differ in the type of decoding (i.e. classification, identification and reconstruction) employed, the target (i.e. decoding visual patterns, auditory patterns, cognitive states), and the decoding algorithms (linear classification, nonlinear classification, direct reconstruction, Bayesian reconstruction, etc.) employed. In 2007, Professor of neuropsychology Barbara Sahakian qualified, "A lot of neuroscientists in the field are very cautious and say we can't talk about reading individuals' minds, and right now that is very true, but we're moving ahead so rapidly, it's not going to be that long before we will be able to tell whether someone's making up a story, or whether someone intended to do a crime with a certain degree of certainty." FORCETOC Identification of complex natural images is possible using voxels from early and anterior visual cortex areas forward of them (visual areas V3A, V3B, V4, and the lateral occipital) together with Bayesian inference. This brain reading approach uses three components: a structural encoding model that characterizes responses in early visual areas; a semantic encoding model that characterizes responses in anterior visual areas; and a Bayesian prior that describes the distribution of structural and semantic scene statistics. Experimentally the procedure is for subjects to view 1750 black and white natural images that are correlated with voxel activation in their brains. Then subjects viewed another 120 novel target images, and information from the earlier scans is used reconstruct them. Natural images used include pictures of a seaside cafe and harbor, performers on a stage, and dense foliage.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
NX-422: Neural interfaces
Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communicatio
NX-421: Neural signals and signal processing
Understanding, processing, and analysis of signals and images obtained from the central and peripheral nervous system
BIOENG-448: Fundamentals of neuroengineering
Neuroengineering is at the frontier between neuroscience and engineering: understanding how the brain works allows developing engineering applications and therapies of high impact, while the design of
Related publications (105)
Related concepts (1)
Brain–computer interface
A brain–computer interface (BCI), sometimes called a brain–machine interface (BMI) or smartbrain, is a direct communication pathway between the brain's electrical activity and an external device, most commonly a computer or robotic limb. BCIs are often directed at researching, mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions. They are often conceptualized as a human–machine interface that skips the intermediary component of the physical movement of body parts, although they also raise the possibility of the erasure of the discreteness of brain and machine.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.