Transcription factor Jun is a protein that in humans is encoded by the JUN gene. c-Jun, in combination with protein c-Fos, forms the AP-1 early response transcription factor. It was first identified as the Fos-binding protein p39 and only later rediscovered as the product of the JUN gene. c-jun was the first oncogenic transcription factor discovered. The proto-oncogene c-Jun is the cellular homolog of the viral oncoprotein v-jun (). The viral homolog v-jun was discovered in avian sarcoma virus 17 and was named for ju-nana, the Japanese word for 17. The human JUN encodes a protein that is highly similar to the viral protein, which interacts directly with specific target DNA sequences to regulate gene expression. This gene is intronless and is mapped to 1p32-p31, a chromosomal region involved in both translocations and deletions in human malignancies.
Both Jun and its dimerization partners in AP-1 formation are subject to regulation by diverse extracellular stimuli, which include peptide growth factors, pro-inflammatory cytokines, oxidative and other forms of cellular stress, and UV irradiation. For example, UV irradiation is a potent inducer for elevated c-jun expression.
c-jun transcription is autoregulated by its own product, Jun. The binding of Jun (AP-1) to a high-affinity AP-1 binding site in the jun promoter region induces jun transcription. This positive autoregulation by stimulating its own transcription may be a mechanism for prolonging the signals from extracellular stimuli. This mechanism can have biological significance for the activity of c-jun in cancer.
Also, the c-jun activities can be regulated by the ERK pathway. Constitutively active ERK is found to increase c-jun transcription and stability through CREB and GSK3. This results in activated c-jun and its downstream targets such as RACK1 and cyclin D1. RACK1 can enhance JNK activity, and activated JNK signaling subsequently exerts regulation on c-jun activity.
It is activated through double phosphorylation by the JNK pathway but has also a phosphorylation-independent function.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The retinoblastoma protein (protein name abbreviated Rb; gene name abbreviated Rb, RB or RB1) is a tumor suppressor protein that is dysfunctional in several major cancers. One function of pRb is to prevent excessive cell growth by inhibiting cell cycle progression until a cell is ready to divide. When the cell is ready to divide, pRb is phosphorylated, inactivating it, and the cell cycle is allowed to progress. It is also a recruiter of several chromatin remodeling enzymes such as methylases and acetylases.
'CREB-binding protein', also known as CREBBP or CBP or KAT3A, (where CREB is cAMP response element-binding protein) is a coactivator encoded by the CREBBP gene in humans, located on chromosome 16p13.3. CBP has intrinsic acetyltransferase functions; it is able to add acetyl groups to both transcription factors as well as histone lysines, the latter of which has been shown to alter chromatin structure making genes more accessible for transcription. This relatively unique acetyltransferase activity is also seen in another transcription enzyme, EP300 (p300).
A biochemical cascade, also known as a signaling cascade or signaling pathway, is a series of chemical reactions that occur within a biological cell when initiated by a stimulus. This stimulus, known as a first messenger, acts on a receptor that is transduced to the cell interior through second messengers which amplify the signal and transfer it to effector molecules, causing the cell to respond to the initial stimulus. Most biochemical cascades are series of events, in which one event triggers the next, in a linear fashion.
This course provides a comprehensive overview of the biology of cancer, illustrating the mechanisms that cancer cells use to grow and disseminate at the expense of normal tissues and organs.
Explores optogenetic tools for probing neuronal activity using light and calcium-gated tools, discussing their applications in neuroscience and beyond.
Explores replicative immortality in cancer cells, focusing on telomere erosion, telomerase activity, and the role of p53 in maintaining genomic stability.
CRAC channel regulator 2 A (CRACR2A) is a large Rab GTPase that is expressed abundantly in T cells and acts as a signal transmitter between T cell receptor stimulation and activation of the Ca2+-NFAT and JNK-AP1 pathways. CRACR2A has been linked to human d ...
This study addresses the roles of nuclear receptor corepressor 2 (NCOR2) in prostate cancer (PC) progression in response to androgen deprivation therapy (ADT). Reduced NCOR2 expression significantly associates with shorter disease-free survival in patients ...
CELL PRESS2021
, ,
Cisplatin [cis-diamminedichloroplatinum(II) (cis-DDP)] is one of the most successful anticancer agents effective against a wide range of solid tumors. However, its use is restricted by side effects and/or by intrinsic or acquired drug resistance. Here, we ...