Publication

Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs; Application to real-time Bayesian parameter estimation

Gianluigi Rozza
2010
Book chapter
Abstract

In this paper we consider reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized linear and non-linear parabolic partial differential equations. The essential ingredients are Galerkin projection onto a low-dimensional space associated with a smooth ``parametric manifold'' --- dimension reduction; efficient and effective Greedy and POD-Greedy sampling methods for identification of optimal and numerically stable approximations --- rapid convergence; rigorous and sharp a posteriori error bounds (and associated stability factors) for the linear-functional outputs of interest --- certainty; and Offline-Online computational decomposition strategies --- minimum marginal cost for high performance in the real-time/embedded (e.g., parameter estimation, control) and many-query (e.g., design optimization, uncertainty quantification, multi- scale) contexts. In this paper we first present reduced basis approximation and a posteriori error estimation for general linear parabolic equations and subsequently for a nonlinear parabolic equation, the incompressible Navier-- Stokes equations. We then present results for the application of our (parabolic) reduced basis methods to Bayesian parameter estimation: detection and characterization of a delamination crack by transient thermal analysis.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.