Galois groupIn mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory.
Braided monoidal categoryIn mathematics, a commutativity constraint on a is a choice of isomorphism for each pair of objects A and B which form a "natural family." In particular, to have a commutativity constraint, one must have for all pairs of objects . A braided monoidal category is a monoidal category equipped with a braiding—that is, a commutativity constraint that satisfies axioms including the hexagon identities defined below. The term braided references the fact that the braid group plays an important role in the theory of braided monoidal categories.
Cartesian monoidal categoryIn mathematics, specifically in the field known as , a where the monoidal ("tensor") product is the is called a cartesian monoidal category. Any with finite products (a "finite product category") can be thought of as a cartesian monoidal category. In any cartesian monoidal category, the terminal object is the monoidal unit. , a monoidal finite coproduct category with the monoidal structure given by the coproduct and unit the initial object is called a cocartesian monoidal category, and any finite coproduct category can be thought of as a cocartesian monoidal category.
Principal bundleIn mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product of a space with a group . In the same way as with the Cartesian product, a principal bundle is equipped with An action of on , analogous to for a product space. A projection onto . For a product space, this is just the projection onto the first factor, . Unlike a product space, principal bundles lack a preferred choice of identity cross-section; they have no preferred analog of .
Galois theoryIn mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand. Galois introduced the subject for studying roots of polynomials.
Symmetric monoidal categoryIn , a branch of mathematics, a symmetric monoidal category is a (i.e. a category in which a "tensor product" is defined) such that the tensor product is symmetric (i.e. is, in a certain strict sense, naturally isomorphic to for all objects and of the category). One of the prototypical examples of a symmetric monoidal category is the over some fixed field k, using the ordinary tensor product of vector spaces.
Simplicial complexIn mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. To distinguish a simplicial complex from an abstract simplicial complex, the former is often called a geometric simplicial complex.
Rigid categoryIn , a branch of mathematics, a rigid category is a where every object is rigid, that is, has a dual X* (the internal Hom [X, 1]) and a morphism 1 → X ⊗ X* satisfying natural conditions. The category is called right rigid or left rigid according to whether it has right duals or left duals. They were first defined (following Alexander Grothendieck) by Neantro Saavedra Rivano in his thesis on . There are at least two equivalent definitions of a rigidity.
Universal enveloping algebraIn mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representation theory of Lie groups and Lie algebras. For example, Verma modules can be constructed as quotients of the universal enveloping algebra. In addition, the enveloping algebra gives a precise definition for the Casimir operators.
Algebraic groupIn mathematics, an algebraic group is an algebraic variety endowed with a group structure that is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many groups of geometric transformations are algebraic groups; for example, orthogonal groups, general linear groups, projective groups, Euclidean groups, etc. Many matrix groups are also algebraic. Other algebraic groups occur naturally in algebraic geometry, such as elliptic curves and Jacobian varieties.