Motion autonomy for humanoids: experiments on HRP-2 No. 14
Related publications (46)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a new framework to generate human-like lower-limb trajectories in periodic and non-periodic walking. In our method, walking dynamics is encoded in 3LP, a linear simplified model composed of three pendulums to simulate falling, swing, and torso b ...
Thanks to better actuator technologies and control algorithms, humanoid robots to date can perform a wide range of locomotion activities outside lab environments. These robots face various control challenges like high dimensionality, contact switches durin ...
Traditional joint-space models used to describe equations of motion for humanoid robots offer nice properties linked directly to the way these robots are built. However, from a computational point of view and convergence properties, these models are not th ...
As humanoid robots become commonplace, learning and control algorithms must take into account the new challenges imposed by this morphology, if we aim to fully exploit their potential. One of the most prominent characteristics of such robots is their biman ...
Model Predictive Control is becoming more and more present in robotic applications. It has been successfully used in control of humanoid robots to adjust positions of the footsteps in order to satisfy stability constraints. In this paper we show how to ada ...
We propose a nonlinear inverse kinematics formulation which solves for positions directly. Compared to various other popular methods that integrate velocities, this formulation can better handle fast, asymmetric and singular-postured balancing tasks for hu ...
Humanoid robots are gaining much interest nowadays. This is partly motivated by the ability of such robots to replace humans in dangerous environments being specifically designed for humans, such as man-made or natural disaster scenarios. However, existing ...
Humanoid robots have many degrees of freedom which ideally enables them to accomplish different tasks. From a control viewpoint, however, the geometric complexity makes planning and control difficult. Favoring controllability properties, it is popular to o ...
We present a new framework to generate human-like lower-limb trajectories in periodic and non-periodic walking conditions. In our method, walking dynamics is encoded in 3LP, a linear simplified model composed of three pendulums to model falling, swing and ...
Dexterity robotic hands can (Cummings, 1996) greatly enhance the functionality of humanoid robots, but the making of such hands with not only human-like appearance but also the capability of performing the natural movement of social robots is a challenging ...