Publication

Universal Bounds And Semiclassical Estimates For Eigenvalues Of Abstract Schrodinger Operators

Joachim Stubbe
2010
Journal paper
Abstract

We prove trace inequalities for a self-adjoint operator on an abstract Hilbert space, which extend those known previously for Laplacians and Schrodinger operators, freeing them from restrictive assumptions on the nature of the spectrum and allowing operators of much more general form. In particular, we allow for the presence of continuous spectrum, which is a necessary underpinning for new proofs of Lieb-Thirring inequalities. We both sharpen and extend universal bounds on spectral gaps and moments of eigenvalues {lambda(k)} of familiar types, and in addition we produce novel kinds of inequalities that are new even in the model cases. These include a family of differential inequalities for generalized Riesz means and a theorem stating that arithmetic means of {lambda(p)(k)}(k=1)(n) with p 8.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.